Suppr超能文献

通过大内核注意力和多尺度融合增强YOLOv11以实现X光片中准确的小尺寸和多病灶骨肿瘤检测

Enhancing YOLOv11 with Large Kernel Attention and Multi-Scale Fusion for Accurate Small and Multi-Lesion Bone Tumor Detection in Radiographs.

作者信息

Chen Sihan, Peng Youcheng, Liu Yingxuan, Wang Pengyu, Liu Tao

机构信息

Sydney Smart Technology College, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China.

School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China.

出版信息

Diagnostics (Basel). 2025 Aug 8;15(16):1988. doi: 10.3390/diagnostics15161988.

Abstract

Primary bone tumors such as osteosarcoma and chondrosarcoma are rare but aggressive malignancies that require early and accurate diagnosis. Although X-ray radiography is a widely accessible imaging modality, detecting small or multi lesions remains challenging. Existing deep learning models are often trained on small, single-center datasets and lack generalizability, limiting their clinical effectiveness. We propose the YOLOv11-MTB, a novel enhancement to YOLOv11 integrating multi-scale Transformer-based attention, boundary-aware feature fusion, and receptive field augmentation to improve detection of small and multi-focal lesions. The model is trained and evaluated on two multi-center datasets, including the BTXRD dataset containing annotated radiographs with lesion types and bounding boxes. YOLOv11-MTB achieves state-of-the-art performance on bone tumor detection tasks. It attains a mean average precision (mAP) of 79.6% on the BTXRD dataset, outperforming existing methods. In clinically relevant categories, the model achieves small-lesion mAP of 55.8% and multi-lesion mAP of 63.2%. The proposed YOLOv11-MTB framework demonstrates promising generalization and accuracy for primary bone tumor detection in radiographic images. Its performance in detecting small and multiple lesions suggests potential for clinical application.

摘要

骨肉瘤和软骨肉瘤等原发性骨肿瘤虽罕见,但却是侵袭性恶性肿瘤,需要早期准确诊断。尽管X线摄影是一种广泛可用的成像方式,但检测小病灶或多发病灶仍具有挑战性。现有的深度学习模型通常在小的单中心数据集上进行训练,缺乏通用性,限制了它们的临床有效性。我们提出了YOLOv11-MTB,这是对YOLOv11的一种新颖改进,集成了基于多尺度Transformer的注意力机制、边界感知特征融合和感受野增强,以改善对小病灶和多发病灶的检测。该模型在两个多中心数据集上进行训练和评估,其中包括BTXRD数据集,该数据集包含带有病变类型和边界框注释的X线片。YOLOv11-MTB在骨肿瘤检测任务中取得了领先的性能。它在BTXRD数据集上的平均精度均值(mAP)达到79.6%,优于现有方法。在临床相关类别中,该模型的小病灶mAP为55.8%,多发病灶mAP为63.2%。所提出的YOLOv11-MTB框架在X线图像中对原发性骨肿瘤检测显示出良好的通用性和准确性。其在检测小病灶和多发病灶方面的性能表明了临床应用的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef21/12386103/0e7498a4ae89/diagnostics-15-01988-g003.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验