Suppr超能文献

组蛋白去乙酰化酶 6 抑制作用利用 LKB1 突变、KRAS 驱动的 NSCLC 的选择性代谢脆弱性。

Histone Deacetylase 6 Inhibition Exploits Selective Metabolic Vulnerabilities in LKB1 Mutant, KRAS Driven NSCLC.

机构信息

Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh School of Medicine, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania; Division of Hematology and Medical Oncology, Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, New York.

Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts; Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts.

出版信息

J Thorac Oncol. 2023 Jul;18(7):882-895. doi: 10.1016/j.jtho.2023.03.014. Epub 2023 Mar 22.

Abstract

INTRODUCTION

In KRAS-mutant NSCLC, co-occurring alterations in LKB1 confer a negative prognosis compared with other mutations such as TP53. LKB1 is a tumor suppressor that coordinates several signaling pathways in response to energetic stress. Our recent work on pharmacologic and genetic inhibition of histone deacetylase 6 (HDAC6) revealed the impaired activity of numerous enzymes involved in glycolysis. On the basis of these previous findings, we explored the therapeutic window for HDAC6 inhibition in metabolically-active KRAS-mutant lung tumors.

METHODS

Using cell lines derived from mouse autochthonous tumors bearing the KRAS/LKB1 (KL) and KRAS/TP53 mutant genotypes to control for confounding germline and somatic mutations in human models, we characterize the metabolic phenotypes at baseline and in response to HDAC6 inhibition. The impact of HDAC6 inhibition was measured on cancer cell growth in vitro and on tumor growth in vivo.

RESULTS

Surprisingly, KL-mutant cells revealed reduced levels of redox-sensitive cofactors at baseline. This is associated with increased sensitivity to pharmacologic HDAC6 inhibition with ACY-1215 and blunted ability to increase compensatory metabolism and buffer oxidative stress. Seeking synergistic metabolic combination treatments, we found enhanced cell killing and antitumor efficacy with glutaminase inhibition in KL lung cancer models in vitro and in vivo.

CONCLUSIONS

Exploring the differential metabolism of KL and KRAS/TP53-mutant NSCLC, we identified decreased metabolic reserve in KL-mutant tumors. HDAC6 inhibition exploited a therapeutic window in KL NSCLC on the basis of a diminished ability to compensate for impaired glycolysis, nominating a novel strategy for the treatment of KRAS-mutant NSCLC with co-occurring LKB1 mutations.

摘要

简介

在 KRAS 突变型 NSCLC 中,与其他突变(如 TP53)相比,LKB1 共发生的改变预示着不良预后。LKB1 是一种肿瘤抑制因子,可协调多条信号通路以响应能量应激。我们最近关于组蛋白去乙酰化酶 6(HDAC6)的药理和遗传抑制的研究揭示了许多参与糖酵解的酶的活性受损。基于这些先前的发现,我们探讨了 HDAC6 抑制在代谢活跃的 KRAS 突变型肺肿瘤中的治疗窗口。

方法

使用源自携带 KRAS/LKB1(KL)和 KRAS/TP53 突变基因型的小鼠自发肿瘤的细胞系,以控制人类模型中的混杂种系和体细胞突变,我们在基线水平和响应 HDAC6 抑制时对代谢表型进行了表征。在体外测量 HDAC6 抑制对癌细胞生长的影响,并在体内测量对肿瘤生长的影响。

结果

令人惊讶的是,KL 突变细胞在基线时显示出还原敏感辅助因子水平降低。这与对 ACY-1215 的药理 HDAC6 抑制的敏感性增加以及增加补偿代谢和缓冲氧化应激的能力降低有关。为了寻找协同代谢联合治疗方法,我们发现 KL 肺癌模型中谷氨酰胺酶抑制具有增强的细胞杀伤和抗肿瘤功效,无论是在体外还是体内。

结论

通过探索 KL 和 KRAS/TP53 突变型 NSCLC 的差异代谢,我们确定 KL 突变肿瘤的代谢储备减少。HDAC6 抑制在 KL NSCLC 中利用了一个治疗窗口,这是基于其补偿受损糖酵解的能力降低,为同时伴有 LKB1 突变的 KRAS 突变型 NSCLC 治疗提出了一种新策略。

相似文献

1
Histone Deacetylase 6 Inhibition Exploits Selective Metabolic Vulnerabilities in LKB1 Mutant, KRAS Driven NSCLC.
J Thorac Oncol. 2023 Jul;18(7):882-895. doi: 10.1016/j.jtho.2023.03.014. Epub 2023 Mar 22.
2
LKB1 and KEAP1/NRF2 Pathways Cooperatively Promote Metabolic Reprogramming with Enhanced Glutamine Dependence in -Mutant Lung Adenocarcinoma.
Cancer Res. 2019 Jul 1;79(13):3251-3267. doi: 10.1158/0008-5472.CAN-18-3527. Epub 2019 Apr 30.
3
Inhibition of autophagy and MEK promotes ferroptosis in Lkb1-deficient Kras-driven lung tumors.
Cell Death Dis. 2023 Jan 26;14(1):61. doi: 10.1038/s41419-023-05592-8.
5
Efficacy of BET bromodomain inhibition in Kras-mutant non-small cell lung cancer.
Clin Cancer Res. 2013 Nov 15;19(22):6183-92. doi: 10.1158/1078-0432.CCR-12-3904. Epub 2013 Sep 17.
6
The hexosamine biosynthesis pathway is a targetable liability in KRAS/LKB1 mutant lung cancer.
Nat Metab. 2020 Dec;2(12):1401-1412. doi: 10.1038/s42255-020-00316-0. Epub 2020 Nov 30.
7
Novel Kras-mutant murine models of non-small cell lung cancer possessing co-occurring oncogenic mutations and increased tumor mutational burden.
Cancer Immunol Immunother. 2021 Aug;70(8):2389-2400. doi: 10.1007/s00262-020-02837-9. Epub 2021 Jan 28.
9
Mutant LKB1 Confers Enhanced Radiosensitization in Combination with Trametinib in KRAS-Mutant Non-Small Cell Lung Cancer.
Clin Cancer Res. 2018 Nov 15;24(22):5744-5756. doi: 10.1158/1078-0432.CCR-18-1489. Epub 2018 Aug 1.
10
Immunohistochemical Loss of LKB1 Is a Biomarker for More Aggressive Biology in KRAS-Mutant Lung Adenocarcinoma.
Clin Cancer Res. 2015 Jun 15;21(12):2851-60. doi: 10.1158/1078-0432.CCR-14-3112. Epub 2015 Mar 3.

引用本文的文献

1
Inhibition of HDAC6 alters fumarate hydratase activity and mitochondrial structure.
Nat Commun. 2025 Jul 28;16(1):6923. doi: 10.1038/s41467-025-61897-6.
2
Targeting LKB1/STK11-mutant cancer: distinct metabolism, microenvironment, and therapeutic resistance.
Trends Pharmacol Sci. 2025 Aug;46(8):722-737. doi: 10.1016/j.tips.2025.06.008. Epub 2025 Jul 22.
3
Histone deacetylase 6: A new player in oxidative stress‑associated disorders and cancers (Review).
Int J Mol Med. 2025 Sep;56(3). doi: 10.3892/ijmm.2025.5578. Epub 2025 Jul 11.
4
Unraveling the immune mechanisms and therapeutic targets in lung adenosquamous transformation.
Front Immunol. 2025 Jun 3;16:1542526. doi: 10.3389/fimmu.2025.1542526. eCollection 2025.
6
Fuel for thought: targeting metabolism in lung cancer.
Transl Lung Cancer Res. 2024 Dec 31;13(12):3692-3717. doi: 10.21037/tlcr-24-662. Epub 2024 Dec 24.
7
GLS and GLS2 Glutaminase Isoenzymes in the Antioxidant System of Cancer Cells.
Antioxidants (Basel). 2024 Jun 20;13(6):745. doi: 10.3390/antiox13060745.
8
Immunotherapy through the Lens of Non-Small Cell Lung Cancer.
Cancers (Basel). 2023 May 30;15(11):2996. doi: 10.3390/cancers15112996.

本文引用的文献

1
KRAS inhibitors, approved.
Nat Cancer. 2021 Dec;2(12):1254-1256. doi: 10.1038/s43018-021-00289-3.
2
Acquired Resistance to KRAS Inhibition in Cancer.
N Engl J Med. 2021 Jun 24;384(25):2382-2393. doi: 10.1056/NEJMoa2105281.
3
Sotorasib for Lung Cancers with p.G12C Mutation.
N Engl J Med. 2021 Jun 24;384(25):2371-2381. doi: 10.1056/NEJMoa2103695. Epub 2021 Jun 4.
4
and co-mutations create divergent immune signatures in lung adenocarcinomas.
Ther Adv Med Oncol. 2021 Apr 22;13:17588359211006950. doi: 10.1177/17588359211006950. eCollection 2021.
6
Proteogenomic Characterization Reveals Therapeutic Vulnerabilities in Lung Adenocarcinoma.
Cell. 2020 Jul 9;182(1):200-225.e35. doi: 10.1016/j.cell.2020.06.013.
7
HDAC6 selective inhibition of melanoma patient T-cells augments anti-tumor characteristics.
J Immunother Cancer. 2019 Feb 6;7(1):33. doi: 10.1186/s40425-019-0517-0.
8
Autophagy modulates lipid metabolism to maintain metabolic flexibility for -deficient -driven lung tumorigenesis.
Genes Dev. 2019 Feb 1;33(3-4):150-165. doi: 10.1101/gad.320481.118. Epub 2019 Jan 28.
9
The Cancer Epigenome: Exploiting Its Vulnerabilities for Immunotherapy.
Trends Cell Biol. 2019 Jan;29(1):31-43. doi: 10.1016/j.tcb.2018.07.006. Epub 2018 Aug 25.
10
Mutations and PD-1 Inhibitor Resistance in -Mutant Lung Adenocarcinoma.
Cancer Discov. 2018 Jul;8(7):822-835. doi: 10.1158/2159-8290.CD-18-0099. Epub 2018 May 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验