Suppr超能文献

精神卫生就诊后自杀死亡预测模型表现的种族/民族差异。

Racial/Ethnic Disparities in the Performance of Prediction Models for Death by Suicide After Mental Health Visits.

机构信息

Kaiser Permanente Washington Health Research Institute, Seattle.

Department of Biostatistics, University of Washington School of Public Health, Seattle.

出版信息

JAMA Psychiatry. 2021 Jul 1;78(7):726-734. doi: 10.1001/jamapsychiatry.2021.0493.

Abstract

IMPORTANCE

Clinical prediction models estimated with health records data may perpetuate inequities.

OBJECTIVE

To evaluate racial/ethnic differences in the performance of statistical models that predict suicide.

DESIGN, SETTING, AND PARTICIPANTS: In this diagnostic/prognostic study, performed from January 1, 2009, to September 30, 2017, with follow-up through December 31, 2017, all outpatient mental health visits to 7 large integrated health care systems by patients 13 years or older were evaluated. Prediction models were estimated using logistic regression with LASSO variable selection and random forest in a training set that contained all visits from a 50% random sample of patients (6 984 184 visits). Performance was evaluated in the remaining 6 996 386 visits, including visits from White (4 031 135 visits), Hispanic (1 664 166 visits), Black (578 508 visits), Asian (313 011 visits), and American Indian/Alaskan Native (48 025 visits) patients and patients without race/ethnicity recorded (274 702 visits). Data analysis was performed from January 1, 2019, to February 1, 2021.

EXPOSURES

Demographic, diagnosis, prescription, and utilization variables and Patient Health Questionnaire 9 responses.

MAIN OUTCOMES AND MEASURES

Suicide death in the 90 days after a visit.

RESULTS

This study included 13 980 570 visits by 1 433 543 patients (64% female; mean [SD] age, 42 [18] years. A total of 768 suicide deaths were observed within 90 days after 3143 visits. Suicide rates were highest for visits by patients with no race/ethnicity recorded (n = 313 visits followed by suicide within 90 days, rate = 5.71 per 10 000 visits), followed by visits by Asian (n = 187 visits followed by suicide within 90 days, rate = 2.99 per 10 000 visits), White (n = 2134 visits followed by suicide within 90 days, rate = 2.65 per 10 000 visits), American Indian/Alaskan Native (n = 21 visits followed by suicide within 90 days, rate = 2.18 per 10 000 visits), Hispanic (n = 392 visits followed by suicide within 90 days, rate = 1.18 per 10 000 visits), and Black (n = 65 visits followed by suicide within 90 days, rate = 0.56 per 10 000 visits) patients. The area under the curve (AUC) and sensitivity of both models were high for White, Hispanic, and Asian patients and poor for Black and American Indian/Alaskan Native patients and patients without race/ethnicity recorded. For example, the AUC for the logistic regression model was 0.828 (95% CI, 0.815-0.840) for White patients compared with 0.640 (95% CI, 0.598-0.681) for patients with unrecorded race/ethnicity and 0.599 (95% CI, 0.513-0.686) for American Indian/Alaskan Native patients. Sensitivity at the 90th percentile was 62.2% (95% CI, 59.2%-65.0%) for White patients compared with 27.5% (95% CI, 21.0%-34.7%) for patients with unrecorded race/ethnicity and 10.0% (95% CI, 0%-23.0%) for Black patients. Results were similar for random forest models, with an AUC of 0.812 (95% CI, 0.800-0.826) for White patients compared with 0.676 (95% CI, 0.638-0.714) for patients with unrecorded race/ethnicity and 0.642 (95% CI, 0.579-0.710) for American Indian/Alaskan Native patients and sensitivities at the 90th percentile of 52.8% (95% CI, 50.0%-55.8%) for White patients, 29.3% (95% CI, 22.8%-36.5%) for patients with unrecorded race/ethnicity, and 6.7% (95% CI, 0%-16.7%) for Black patients.

CONCLUSIONS AND RELEVANCE

These suicide prediction models may provide fewer benefits and more potential harms to American Indian/Alaskan Native or Black patients or those with undrecorded race/ethnicity compared with White, Hispanic, and Asian patients. Improving predictive performance in disadvantaged populations should be prioritized to improve, rather than exacerbate, health disparities.

摘要

重要性

使用健康记录数据估计的临床预测模型可能会延续不公平现象。

目的

评估预测自杀的统计模型在不同种族/族裔人群中的表现差异。

设计、设置和参与者:在这项诊断/预后研究中,从 2009 年 1 月 1 日至 2017 年 9 月 30 日进行,随访至 2017 年 12 月 31 日,评估了 7 个大型综合医疗保健系统所有 13 岁及以上患者的门诊心理健康就诊情况。在训练集中使用逻辑回归和 LASSO 变量选择以及随机森林对所有就诊数据(来自 50%随机患者样本的 6984184 次就诊)进行模型估计。在剩余的 6996386 次就诊中评估模型表现,包括来自白人(4031135 次就诊)、西班牙裔(1664166 次就诊)、黑人(578508 次就诊)、亚裔(313011 次就诊)和美国印第安人/阿拉斯加原住民(48025 次就诊)患者以及未记录种族/族裔的患者(274702 次就诊)。数据分析于 2019 年 1 月 1 日至 2021 年 2 月 1 日进行。

暴露因素

人口统计学、诊断、处方和使用变量以及 PHQ-9 回答。

主要结局和测量指标

就诊后 90 天内的自杀死亡。

结果

这项研究共纳入了 13980570 次就诊,涉及 1433543 名患者(64%为女性;平均[标准差]年龄为 42[18]岁)。在 3143 次就诊后 90 天内共观察到 768 例自杀死亡。自杀率最高的是未记录种族/族裔的患者(313 次就诊后 90 天内自杀率为 5.71/10000),其次是亚裔(187 次就诊后 90 天内自杀率为 2.99/10000)、白人(2134 次就诊后 90 天内自杀率为 2.65/10000)、美国印第安人/阿拉斯加原住民(21 次就诊后 90 天内自杀率为 2.18/10000)、西班牙裔(392 次就诊后 90 天内自杀率为 1.18/10000)和黑人(65 次就诊后 90 天内自杀率为 0.56/10000)。对于白人、西班牙裔和亚裔患者,两种模型的曲线下面积(AUC)和敏感性均较高,而对于黑人、美国印第安人/阿拉斯加原住民和未记录种族/族裔的患者则较低。例如,对于白人患者,逻辑回归模型的 AUC 为 0.828(95%CI,0.815-0.840),而对于未记录种族/族裔的患者为 0.640(95%CI,0.698-0.681),对于美国印第安人/阿拉斯加原住民患者为 0.599(95%CI,0.513-0.686)。对于白人患者,90 分位数的敏感性为 62.2%(95%CI,59.2%-65.0%),而对于未记录种族/族裔的患者为 27.5%(95%CI,21.0%-34.7%),对于黑人患者为 10.0%(95%CI,0%-23.0%)。随机森林模型的结果相似,对于白人患者,AUC 为 0.812(95%CI,0.800-0.826),对于未记录种族/族裔的患者为 0.676(95%CI,0.638-0.714),对于美国印第安人/阿拉斯加原住民患者为 0.642(95%CI,0.579-0.710),90 分位数的敏感性分别为 52.8%(95%CI,50.0%-55.8%)、29.3%(95%CI,22.8%-36.5%)和 6.7%(95%CI,0%-16.7%)。

结论和相关性

与白人、西班牙裔和亚裔患者相比,这些自杀预测模型可能对美国印第安人/阿拉斯加原住民或黑人患者或未记录种族/族裔的患者带来较少的益处和更多的潜在危害。应优先提高弱势群体的预测性能,以改善而非加剧健康差异。

相似文献

引用本文的文献

5
Harnessing digital health data for suicide prevention and care: A rapid review.利用数字健康数据预防自杀和提供护理:快速综述。
Digit Health. 2025 Feb 23;11:20552076241308615. doi: 10.1177/20552076241308615. eCollection 2025 Jan-Dec.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验