Suppr超能文献

利用卫生系统数据预测自残行为时不同时间框架变量的重要性。

Importance of variables from different time frames for predicting self-harm using health system data.

作者信息

Wolock Charles J, Williamson Brian D, Shortreed Susan M, Simon Gregory E, Coleman Karen J, Yeargans Rodney, Ahmedani Brian K, Daida Yihe, Lynch Frances L, Rossom Rebecca C, Ziebell Rebecca A, Cruz Maricela, Wellman Robert D, Coley R Yates

机构信息

Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, 423 Guardian Dr., Philadelphia, PA, 19104, USA.

Kaiser Permanente Washington Health Research Institute, 1730 Minor Ave., Suite 1360, Seattle, WA, 98101, USA; Department of Biostatistics, University of Washington, 3980 15th Ave. NE, Box 351617, Seattle, WA, 98195, USA.

出版信息

J Biomed Inform. 2024 Dec;160:104750. doi: 10.1016/j.jbi.2024.104750. Epub 2024 Nov 16.

Abstract

OBJECTIVE

Self-harm risk prediction models developed using health system data (electronic health records and insurance claims information) often use patient information from up to several years prior to the index visit when the prediction is made. Measurements from some time periods may not be available for all patients. Using the framework of algorithm-agnostic variable importance, we study the predictive potential of variables corresponding to different time horizons prior to the index visit and demonstrate the application of variable importance techniques in the biomedical informatics setting.

MATERIALS AND METHODS

We use variable importance to quantify the potential of recent (up to three months before the index visit) and distant (more than one year before the index visit) patient mental health information for predicting self-harm risk using data from seven health systems. We quantify importance as the decrease in predictiveness when the variable set of interest is excluded from the prediction task. We define predictiveness using discriminative metrics: area under the receiver operating characteristic curve (AUC), sensitivity, and positive predictive value.

RESULTS

Mental health predictors corresponding to the three months prior to the index visit show strong signal of importance; in one setting, excluding these variables decreased AUC from 0.85 to 0.77. Predictors corresponding to more distant information were less important.

DISCUSSION

Predictors from the months immediately preceding the index visit are highly important. Implementation of self-harm prediction models may be challenging in settings where recent data are not completely available (e.g., due to lags in insurance claims processing) at the time a prediction is made.

CONCLUSION

Clinically derived variables from different time frames exhibit varying levels of importance for predicting self-harm. Variable importance analyses can inform whether and how to implement risk prediction models into clinical practice given real-world data limitations. These analyses be applied more broadly in biomedical informatics research to provide insight into general clinical risk prediction tasks.

摘要

目的

利用卫生系统数据(电子健康记录和保险理赔信息)开发的自残风险预测模型在进行预测时,通常会使用索引就诊前长达数年的患者信息。某些时间段的测量数据可能并非所有患者都有。我们使用与算法无关的变量重要性框架,研究索引就诊前不同时间范围对应的变量的预测潜力,并展示变量重要性技术在生物医学信息学环境中的应用。

材料与方法

我们使用变量重要性来量化近期(索引就诊前三个月内)和远期(索引就诊前一年以上)患者心理健康信息对使用七个卫生系统数据预测自残风险的潜力。我们将重要性量化为在预测任务中排除感兴趣的变量集时预测能力的下降。我们使用判别指标来定义预测能力:受试者工作特征曲线下面积(AUC)、敏感性和阳性预测值。

结果

与索引就诊前三个月相对应的心理健康预测指标显示出很强的重要性信号;在一种情况下,排除这些变量会使AUC从0.85降至0.77。与更远期信息相对应的预测指标重要性较低。

讨论

索引就诊前几个月的预测指标非常重要。在进行预测时,近期数据不完全可用(例如,由于保险理赔处理滞后)的情况下,实施自残预测模型可能具有挑战性。

结论

来自不同时间框架的临床衍生变量在预测自残方面表现出不同程度的重要性。考虑到现实世界的数据限制,变量重要性分析可以为是否以及如何将风险预测模型应用于临床实践提供信息。这些分析可以更广泛地应用于生物医学信息学研究,以深入了解一般临床风险预测任务。

相似文献

本文引用的文献

3
Significance Tests of Feature Relevance for a Black-Box Learner.黑箱学习器的特征相关性显著性检验
IEEE Trans Neural Netw Learn Syst. 2022 Jun 30;PP. doi: 10.1109/TNNLS.2022.3185742.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验