Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, United Kingdom.
Polymer and Process Engineering, Indian Institute of Technology, Roorkee, Saharanpur 247001, India.
ACS Appl Mater Interfaces. 2023 Apr 5;15(13):17195-17210. doi: 10.1021/acsami.3c00281. Epub 2023 Mar 24.
We report a Lego-inspired glass capillary microfluidic device capable of encapsulating both organic and aqueous phase change materials (PCMs) with high reproducibility and 100% PCM yield. Oil-in-oil-in-water (O/O/W) and water-in-oil-in-water (W/O/W) core-shell double emulsion droplets were formed to encapsulate hexadecane (HD, an organic PCM) and salt hydrate SP21EK (an aqueous PCM) in a UV-curable polymeric shell, Norland Optical Adhesive (NOA). The double emulsions were consolidated through on-the-fly polymerization, which followed thiol-ene click chemistry for photoinitiation. The particle diameters and shell thicknesses of the microcapsules were controlled by manipulating the geometry of glass capillaries and fluid flow rates. The microcapsules were monodispersed and exhibited the highest encapsulation efficiencies of 65.4 and 44.3% for HD and SP21EK-based materials, respectively, as determined using differential scanning calorimetry (DSC). The thermogravimetric (TGA) analysis confirmed much higher thermal stability of both encapsulated PCMs compared to pure PCMs. Polarization microscopy revealed that microcapsules could sustain over 100 melting-crystallization cycles without any structural changes. Bifunctional microcapsules with remarkable photocatalytic activity along with thermal energy storage performance were produced after the addition of 1 wt % titanium dioxide (TiO) nanoparticles (NPs) into the polymeric shell. The presence of TiO NPs in the shell was confirmed by higher opacity and whiteness of these microcapsules and was quantified by energy dispersive X-ray (EDX) spectroscopy. Young's modulus of HD-based microcapsules estimated using micromanipulation analysis increased from 58.5 to 224 MPa after TiO incorporation in the shell.
我们报告了一种受乐高启发的玻璃毛细管微流控装置,该装置能够以高重现性和 100%的 PCM 产率封装有机和水相相变材料 (PCM)。油包油包水 (O/O/W) 和水包油包水 (W/O/W) 核壳双重乳液滴被形成以将十六烷 (HD,一种有机 PCM) 和盐水合物 SP21EK (一种水相 PCM) 封装在可光固化聚合物壳 Norland 光学粘合剂 (NOA) 中。通过硫醇-烯点击化学进行光引发,双乳液在随飞聚合过程中得到巩固。通过操纵玻璃毛细管的几何形状和流体流速来控制微胶囊的粒径和壳厚度。微胶囊呈单分散性,使用差示扫描量热法 (DSC) 分别确定了 HD 和基于 SP21EK 的材料的最高封装效率为 65.4%和 44.3%。热重 (TGA) 分析证实,与纯 PCM 相比,封装的 PCM 的热稳定性要高得多。偏光显微镜表明,微胶囊在没有任何结构变化的情况下可以承受超过 100 次的熔化-结晶循环。在聚合物壳中加入 1wt%的二氧化钛 (TiO) 纳米粒子 (NPs) 后,产生了具有显著光催化活性和热能存储性能的双功能微胶囊。TiO NPs 存在于壳中,这可以通过这些微胶囊的更高不透明度和更白度来证实,并通过能量色散 X 射线 (EDX) 光谱进行定量。通过微操作分析估计,基于 HD 的微胶囊的杨氏模量在壳中加入 TiO 后从 58.5MPa 增加到 224MPa。