Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305.
HHMI, Stanford University School of Medicine, Stanford, CA 94305.
Proc Natl Acad Sci U S A. 2023 Mar 28;120(13):e2300363120. doi: 10.1073/pnas.2300363120. Epub 2023 Mar 24.
α- and β-neurexins are extensively alternatively spliced, presynaptic cell-adhesion molecules that are thought to organize synapse assembly. However, recent data revealed that, in the hippocampus in vivo, the deletion of one neurexin isoform, , surprisingly increased excitatory synapse numbers and enhanced their presynaptic release probability, suggesting that restricts, instead of enabling, synapse assembly. To delineate the synaptic function and mechanism of action of , we examined cultured hippocampal neurons as a reduced system. In heterologous synapse formation assays, different alternatively spliced Nrxn2β isoforms robustly promoted synapse assembly similar to Nrxn1β and Nrxn3β, consistent with a general synaptogenic function of neurexins. Deletion of from cultured hippocampal neurons, however, caused a significant increase in synapse density and release probability, replicating the in vivo data that suggested a synapse-restricting function. Rescue experiments revealed that two of the four Nrxn2β splice variants (Nrxn2β-SS4+/SS5- and Nrxn2β-SS4+/SS5+) reversed the increase in synapse density in -deficient neurons, whereas only one of the four Nrxn2β splice variants (Nrxn2β-SS4+/SS5+) normalized the increase in release probability in -deficient neurons. Thus, a subset of splice variants restricts synapse numbers and restrains their release probability in cultured neurons.
α-和β-神经连接蛋白广泛地进行选择性剪接,是一种突触前细胞黏附分子,被认为可以组织突触的形成。然而,最近的数据显示,在体内海马体中,缺失一种神经连接蛋白同工型( ),出人意料地增加了兴奋性突触的数量,并增强了它们的突触前释放概率,这表明 限制了突触的形成,而不是促进了突触的形成。为了描绘 的突触功能和作用机制,我们以培养的海马神经元作为简化系统进行了研究。在异源突触形成测定中,不同的选择性剪接 Nrxn2β 同工型强烈促进了突触的形成,类似于 Nrxn1β 和 Nrxn3β,这与神经连接蛋白的一般促突触形成功能一致。然而,从培养的海马神经元中缺失 ,会导致突触密度和释放概率显著增加,这与体内数据一致,表明其具有限制突触形成的功能。挽救实验表明,在 Nrxn2β 中,有两个剪接变体(Nrxn2β-SS4+/SS5- 和 Nrxn2β-SS4+/SS5+)可以逆转 缺失神经元中突触密度的增加,而只有一个 Nrxn2β 剪接变体(Nrxn2β-SS4+/SS5+)可以使 缺失神经元中释放概率的增加恢复正常。因此, 剪接变体的一个子集限制了培养神经元中的突触数量,并限制了它们的释放概率。