Ocampo Alex, Valadez Joseph J, Hedt-Gauthier Bethany, Pagano Marcello
Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, United States of America.
Department of International Public Health, Liverpool School of Tropical Medicine, Liverpool, United Kingdom.
PLOS Glob Public Health. 2022 May 25;2(5):e0000178. doi: 10.1371/journal.pgph.0000178. eCollection 2022.
The global movement to use routine information for managing health systems to achieve the Sustainable Development Goals, relies on administrative data which have inherent biases when used to estimate coverage with health services. Health policies and interventions planned with incorrect information can have detrimental impacts on communities. Statistical inferences using administrative data can be improved when they are combined with random probability survey data. Sometimes, survey data are only available for some districts. We present new methods for extending combined estimation techniques to all districts by combining additional data sources. Our study uses data from a probability survey (n = 1786) conducted during 2015 in 19 of Benin's 77 communes and administrative count data from all of them for a national immunization day (n = 2,792,803). Communes are equivalent to districts. We extend combined-data estimation from 19 to 77 communes by estimating denominators using the survey data and then building a statistical model using population estimates from different sources to estimate denominators in adjacent districts. By dividing administrative numerators by the model-estimated denominators we obtain extrapolated hybrid prevalence estimates. Framing the problem in the Bayesian paradigm guarantees estimated prevalence rates fall within the appropriate ranges and conveniently incorporates a sensitivity analysis. Our new methodology, estimated Benin's polio vaccination rates for 77 communes. We leveraged probability survey data from 19 communes to formulate estimates for the 58 communes with administrative data alone; polio vaccination coverage estimates in the 58 communes decreased to ranges consistent with those from the probability surveys (87%, standard deviation = 0.09) and more credible than the administrative estimates. Combining probability survey and administrative data can be extended beyond the districts in which both are collected to estimate coverage in an entire catchment area. These more accurate results will better inform health policy-making and intervention planning to reduce waste and improve health in communities.
利用常规信息管理卫生系统以实现可持续发展目标的全球行动,依赖于行政数据,而这些数据在用于估计卫生服务覆盖率时存在固有偏差。基于错误信息制定的卫生政策和干预措施可能会对社区产生不利影响。将行政数据与随机概率调查数据相结合,可以改进基于行政数据的统计推断。有时,调查数据仅适用于某些地区。我们提出了新的方法,通过结合其他数据源,将组合估计技术扩展到所有地区。我们的研究使用了2015年在贝宁77个行政区中的19个行政区进行的概率调查数据(n = 1786),以及所有行政区在全国免疫日的行政计数数据(n = 2,792,803)。行政区相当于地区。我们通过使用调查数据估计分母,然后使用来自不同来源的人口估计构建统计模型来估计相邻地区的分母,将组合数据估计从19个行政区扩展到77个行政区。通过将行政分子除以模型估计的分母,我们获得了外推的混合患病率估计值。在贝叶斯范式中构建问题可确保估计的患病率落在适当范围内,并方便地纳入敏感性分析。我们的新方法估计了贝宁77个行政区的脊髓灰质炎疫苗接种率。我们利用19个行政区的概率调查数据,为仅拥有行政数据的58个行政区制定估计值;58个行政区的脊髓灰质炎疫苗接种覆盖率估计值降至与概率调查一致的范围(87%,标准差 = 0.09),并且比行政估计更可信。将概率调查和行政数据相结合可以扩展到同时收集这两种数据的地区之外,以估计整个集水区的覆盖率。这些更准确的结果将为卫生政策制定和干预规划提供更好的信息,以减少浪费并改善社区健康。