Max Planck Institute for Terrestrial Microbiology and LOEWE Centre for Synthetic Microbiology (SYNMIKRO), Marburg, Germany.
Max Planck Institute for Terrestrial Microbiology and LOEWE Centre for Synthetic Microbiology (SYNMIKRO), Marburg, Germany.
Biophys J. 2023 May 2;122(9):1577-1585. doi: 10.1016/j.bpj.2023.03.033. Epub 2023 Mar 24.
Fluorescent microscopy is the primary method to study DNA organization within cells. However, the variability and low signal/noise commonly associated with live-cell time-lapse imaging challenges quantitative measurements. In particular, obtaining quantitative or mechanistic insight often depends on the accurate tracking of fluorescent particles. Here, we present Track, an inference method that determines the most likely temporal tracking of replicating intracellular particles such DNA loci while accounting for missing, merged, and spurious detections. It allows the accurate prediction of particle copy numbers as well as the timing of replication events. We demonstrate Track's abilities and gain new insight into plasmid copy number control and the volume dependence of bacterial chromosome replication initiation. By enabling the accurate tracking of DNA loci, Track can help to uncover the mechanistic principles of chromosome organization and dynamics across a range of systems.
荧光显微镜是研究细胞内 DNA 组织的主要方法。然而,活细胞延时成像中常见的变异性和低信号/噪声挑战了定量测量。特别是,获得定量或机制上的洞察力通常取决于对荧光粒子的准确跟踪。在这里,我们提出了 Track,这是一种推断方法,可以在考虑到缺失、合并和虚假检测的情况下,确定复制的细胞内粒子(如 DNA 基因座)最有可能的时间跟踪。它允许准确预测粒子的拷贝数以及复制事件的时间。我们展示了 Track 的能力,并对质粒拷贝数控制和细菌染色体复制起始的体积依赖性有了新的认识。通过能够准确跟踪 DNA 基因座,Track 可以帮助揭示染色体组织和动力学的机制原理,涵盖一系列系统。