Department of Computer Science and Engineering, Indian Institute of Information Technology, Sonepat, Haryana, 131029, India.
Department of Mathematics, École Centrale School of Engineering, Mahindra University, Hyderabad, 500043, India.
Interdiscip Sci. 2023 Sep;15(3):374-392. doi: 10.1007/s12539-023-00562-2. Epub 2023 Mar 26.
Chest radiography is a widely used diagnostic imaging procedure in medical practice, which involves prompt reporting of future imaging tests and diagnosis of diseases in the images. In this study, a critical phase in the radiology workflow is automated using the three convolutional neural network (CNN) models, viz. DenseNet121, ResNet50, and EfficientNetB1 for fast and accurate detection of 14 class labels of thoracic pathology diseases based on chest radiography. These models were evaluated on an AUC score for normal versus abnormal chest radiographs using 112120 chest X-ray14 datasets containing various class labels of thoracic pathology diseases to predict the probability of individual diseases and warn clinicians of potential suspicious findings. With DenseNet121, the AUROC scores for hernia and emphysema were predicted as 0.9450 and 0.9120, respectively. Compared to the score values obtained for each class on the dataset, the DenseNet121 outperformed the other two models. This article also aims to develop an automated server to capture fourteen thoracic pathology disease results using a tensor processing unit (TPU). The results of this study demonstrate that our dataset can be used to train models with high diagnostic accuracy for predicting the likelihood of 14 different diseases in abnormal chest radiographs, enabling accurate and efficient discrimination between different types of chest radiographs. This has the potential to bring benefits to various stakeholders and improve patient care.
胸部 X 射线摄影是医学实践中广泛使用的诊断成像程序,涉及及时报告未来的成像测试和对图像中疾病的诊断。在这项研究中,使用三个卷积神经网络 (CNN) 模型——DenseNet121、ResNet50 和 EfficientNetB1,自动化了放射科工作流程的一个关键阶段,以便基于胸部 X 射线摄影快速准确地检测 14 种胸部病理疾病的类标签。这些模型在 AUC 评分上进行了评估,用于正常与异常胸部 X 射线的对比,使用了包含各种胸部病理疾病类标签的 112120 个胸部 X 射线 14 数据集,以预测个体疾病的概率,并提醒临床医生注意潜在的可疑发现。对于 DenseNet121,疝和肺气肿的 AUROC 分数分别预测为 0.9450 和 0.9120。与数据集上每个类别的得分值相比,DenseNet121 优于其他两个模型。本文还旨在开发一个自动化服务器,使用张量处理单元 (TPU) 捕获十四种胸部病理疾病结果。这项研究的结果表明,我们的数据集可用于训练具有高诊断准确性的模型,以预测异常胸部 X 射线片中 14 种不同疾病的可能性,从而实现对不同类型胸部 X 射线的准确和高效区分。这有可能为各利益相关者带来益处并改善患者护理。