Suppr超能文献

新型冠状病毒肺炎患者呼出气颗粒的蛋白质组学特征及诊断潜力

Proteomic characteristics and diagnostic potential of exhaled breath particles in patients with COVID-19.

作者信息

Hirdman Gabriel, Bodén Embla, Kjellström Sven, Fraenkel Carl-Johan, Olm Franziska, Hallgren Oskar, Lindstedt Sandra

机构信息

Dept. of Clinical Sciences, Lund University, Lund, Sweden.

Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden.

出版信息

Clin Proteomics. 2023 Mar 27;20(1):13. doi: 10.1186/s12014-023-09403-2.

Abstract

BACKGROUND

SARS-CoV-2 has been shown to predominantly infect the airways and the respiratory tract and too often have an unpredictable and different pathologic pattern compared to other respiratory diseases. Current clinical diagnostical tools in pulmonary medicine expose patients to harmful radiation, are too unspecific or even invasive. Proteomic analysis of exhaled breath particles (EBPs) in contrast, are non-invasive, sample directly from the pathological source and presents as a novel explorative and diagnostical tool.

METHODS

Patients with PCR-verified COVID-19 infection (COV-POS, n = 20), and patients with respiratory symptoms but with > 2 negative polymerase chain reaction (PCR) tests (COV-NEG, n = 16) and healthy controls (HCO, n = 12) were prospectively recruited. EBPs were collected using a "particles in exhaled air" (PExA 2.0) device. Particle per exhaled volume (PEV) and size distribution profiles were compared. Proteins were analyzed using liquid chromatography-mass spectrometry. A random forest machine learning classification model was then trained and validated on EBP data achieving an accuracy of 0.92.

RESULTS

Significant increases in PEV and changes in size distribution profiles of EBPs was seen in COV-POS and COV-NEG compared to healthy controls. We achieved a deep proteome profiling of EBP across the three groups with proteins involved in immune activation, acute phase response, cell adhesion, blood coagulation, and known components of the respiratory tract lining fluid, among others. We demonstrated promising results for the use of an integrated EBP biomarker panel together with particle concentration for diagnosis of COVID-19 as well as a robust method for protein identification in EBPs.

CONCLUSION

Our results demonstrate the promising potential for the use of EBP fingerprints in biomarker discovery and for diagnosing pulmonary diseases, rapidly and non-invasively with minimal patient discomfort.

摘要

背景

严重急性呼吸综合征冠状病毒2(SARS-CoV-2)已被证明主要感染气道和呼吸道,并且与其他呼吸道疾病相比,常常具有不可预测且不同的病理模式。肺部医学中目前的临床诊断工具会使患者暴露于有害辐射下,特异性不足甚至具有侵入性。相比之下,呼出气颗粒(EBP)的蛋白质组分析是非侵入性的,直接从病理源头取样,是一种新型的探索性和诊断工具。

方法

前瞻性招募了经聚合酶链反应(PCR)验证的新型冠状病毒肺炎感染患者(COV-POS,n = 20)、有呼吸道症状但多次聚合酶链反应(PCR)检测呈阴性的患者(COV-NEG,n = 16)和健康对照者(HCO,n = 12)。使用“呼出气中的颗粒”(PExA 2.0)设备收集EBP。比较了每呼出体积颗粒数(PEV)和粒径分布情况。使用液相色谱-质谱法分析蛋白质。然后在EBP数据上训练并验证了随机森林机器学习分类模型,准确率达到0.92。

结果

与健康对照者相比,COV-POS组和COV-NEG组的PEV显著增加,EBP的粒径分布情况发生变化。我们对三组的EBP进行了深度蛋白质组分析,发现了参与免疫激活、急性期反应、细胞黏附、血液凝固以及呼吸道内衬液已知成分等的蛋白质。我们展示了使用综合EBP生物标志物面板以及颗粒浓度诊断新型冠状病毒肺炎的有前景的结果,以及一种用于鉴定EBP中蛋白质的可靠方法。

结论

我们的结果表明,EBP指纹图谱在生物标志物发现以及快速、非侵入性地诊断肺部疾病且使患者不适最小化方面具有有前景的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12b7/10041812/93c2599b162a/12014_2023_9403_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验