Suppr超能文献

鼠基质细胞混淆异种移植模型的蛋白质组学特征和定量分析。

Mouse Stromal Cells Confound Proteomic Characterization and Quantification of Xenograft Models.

机构信息

School of Life Science and Technology, ShanghaiTech University, Shanghai, P.R. China.

Crown Bioscience Inc., Suzhou, P.R. China.

出版信息

Cancer Res Commun. 2023 Feb 6;3(2):202-214. doi: 10.1158/2767-9764.CRC-22-0431. eCollection 2023 Feb.

Abstract

UNLABELLED

Xenografts are essential models for studying cancer biology and developing oncology drugs, and are more informative with omics data. Most reported xenograft proteomics projects directly profiled tumors comprising human cancer cells and mouse stromal cells, followed by computational algorithms for assigning peptides to human and mouse proteins. We evaluated the performance of three main algorithms by carrying out benchmark studies on a series of human and mouse cell line mixtures and a set of liver patient-derived xenograft (PDX) models. Our study showed that approximately half of the characterized peptides are common between human and mouse proteins, and their allocations to human or mouse proteins cannot be satisfactorily achieved by any algorithm. As a result, many human proteins are erroneously labeled as differentially expressed proteins (DEP) between samples from the same human cell line mixed with different percentages of mouse cells, and the number of such false DEPs increases superquadratically with the mouse cell percentage. When mouse stromal cells are not removed from PDX tumors, about 30%-40% of DEPs from pairwise comparisons of PDX models are false positives, and about 20% of real DEPs cannot be identified irrespective of the threshold for calling differential expression. In conclusion, our study demonstrated that it is advisable to separate human and mouse cells in xenograft tumors before proteomic profiling to obtain more accurate measurement of species-specific protein expression.

SIGNIFICANCE

This study advocates the separate-then-run over the run-then-separate approach as a better strategy for more reliable proteomic profiling of xenografts.

摘要

未加标签

异种移植物是研究癌症生物学和开发肿瘤药物的重要模型,并且具有组学数据更具信息性。大多数报道的异种移植物蛋白质组学项目直接对包含人类癌细胞和小鼠基质细胞的肿瘤进行了分析,然后使用计算算法将肽分配给人类和小鼠蛋白质。我们通过对一系列人类和小鼠细胞系混合物以及一组肝患者来源的异种移植 (PDX) 模型进行基准研究,评估了三种主要算法的性能。我们的研究表明,大约一半的特征肽在人类和小鼠蛋白质之间是共同的,并且任何算法都不能令人满意地将它们分配给人类或小鼠蛋白质。结果,许多人类蛋白质被错误地标记为来自与不同百分比的小鼠细胞混合的相同人类细胞系的样本之间的差异表达蛋白 (DEP),并且这种假 DEP 的数量随着小鼠细胞百分比的超二次增加而增加。当从 PDX 肿瘤中未去除小鼠基质细胞时,来自 PDX 模型两两比较的约 30%-40%的 DEP 是假阳性,并且约 20%的真实 DEP 无论调用差异表达的阈值如何都无法识别。总之,我们的研究表明,在进行蛋白质组学分析之前,将异种移植物肿瘤中的人类和小鼠细胞分开是明智的,以获得更准确的物种特异性蛋白质表达测量。

意义

这项研究主张采用“先分离后运行”的方法优于“先运行后分离”的方法,作为更可靠的异种移植物蛋白质组学分析的更好策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78dd/10035517/7c1b746e8036/crc-22-0431_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验