Suppr超能文献

巴西各州新冠疫情演变的无监督分析:疫苗接种情况

Unsupervised analysis of COVID-19 pandemic evolution in brazilian states: Vaccination Scenario.

作者信息

Cassão Victor, Alves Domingos, Mioto Ana Clara de Andrade, Mozini Mariana Tavares, Segamarchi Renan Barbieri, Miyoshi Newton Shydeo Brandão

机构信息

São Carlos School of Engineering, University of São Paulo.

Ribeirao Preto Medical School, University of São Paulo.

出版信息

Procedia Comput Sci. 2023;219:1453-1461. doi: 10.1016/j.procs.2023.01.435. Epub 2023 Mar 22.

Abstract

Brazil is one of the countries with the worst response against the pandemic scenario of coronavírus. At the beginning we were on average with 4000 deaths in a 24 hours period. In the course of this situation, large amounts of health and medicine datasets were being generated in real time, requiring effective ways to extract information and discover patterns that can help in the fight against this disease. And even more important is to monitor the progress of prophylactic measures and whether they are being effective in reducing the spread of the virus. Thus, the aim of this study is to analyze how the coronavirus has different ways to evolve in each Brazilian state with the influences of the vaccination process. To achieve this goal, the time series Clustering Technique based on a K-Means variation was applied, with the similarity metric Dynamic Time Warping (DTW). We produced this study using the data reported by the Ministry of Health in Brazil, referring to deaths per 100k inhabitants and all vaccination data available. Our results indicate an unevenly occurring vaccination and the need to identify other associated patterns with human development indices and other socio-economic indicators, being this the first analysis developed in the country, under the goals above.

摘要

巴西是应对新冠疫情表现最差的国家之一。起初,我们平均每天有4000人死亡。在这种情况下,大量的健康和医学数据集实时生成,需要有效的方法来提取信息并发现有助于抗击这种疾病的模式。更重要的是监测预防措施的进展情况以及它们在减少病毒传播方面是否有效。因此,本研究的目的是分析在疫苗接种过程的影响下,新冠病毒在巴西每个州的演变方式有何不同。为实现这一目标,应用了基于K均值变体的时间序列聚类技术,并采用了动态时间规整(DTW)相似性度量。我们使用巴西卫生部报告的数据进行了这项研究,数据涉及每10万居民的死亡人数以及所有可用的疫苗接种数据。我们的结果表明疫苗接种情况不均衡,并且需要识别与人类发展指数和其他社会经济指标相关的其他模式,这是该国在上述目标下开展的首次分析。

相似文献

2
Unsupervised analysis of COVID-19 pandemic evolution in brazilian states.巴西各州新冠疫情演变的无监督分析。
Procedia Comput Sci. 2022;196:655-662. doi: 10.1016/j.procs.2021.12.061. Epub 2022 Jan 10.
8
Brazil: the emerging epicenter of COVID-19 pandemic.巴西:COVID-19 大流行的新兴震中。
Rev Soc Bras Med Trop. 2020 Oct 21;53:e20200550. doi: 10.1590/0037-8682-0550-2020. eCollection 2020.

本文引用的文献

1
Unsupervised analysis of COVID-19 pandemic evolution in brazilian states.巴西各州新冠疫情演变的无监督分析。
Procedia Comput Sci. 2022;196:655-662. doi: 10.1016/j.procs.2021.12.061. Epub 2022 Jan 10.
2
Brazil: the emerging epicenter of COVID-19 pandemic.巴西:COVID-19 大流行的新兴震中。
Rev Soc Bras Med Trop. 2020 Oct 21;53:e20200550. doi: 10.1590/0037-8682-0550-2020. eCollection 2020.
3
The Brazilian National Immunization Program: 46 years of achievements and challenges.巴西国家免疫计划:46 年的成就与挑战。
Cad Saude Publica. 2020 Oct 26;36Suppl 2(Suppl 2):e00222919. doi: 10.1590/0102-311X00222919. eCollection 2020.
5
Clustering analysis of countries using the COVID-19 cases dataset.使用新冠疫情病例数据集对各国进行聚类分析。
Data Brief. 2020 May 29;31:105787. doi: 10.1016/j.dib.2020.105787. eCollection 2020 Aug.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验