Suppr超能文献

迈向基于结构的全氟和多氟烷基物质(PFAS)可重现化学类别,以指导和评估毒性及毒代动力学测试。

Towards reproducible structure-based chemical categories for PFAS to inform and evaluate toxicity and toxicokinetic testing.

作者信息

Patlewicz Grace, Richard Ann M, Williams Antony J, Judson Richard S, Thomas Russell S

机构信息

Center for Computational Toxicology and Exposure (CCTE), Office of Research and Development, US Environmental Protection Agency, 109 TW Alexander Dr, Research Triangle Park, NC 27711, USA.

出版信息

Comput Toxicol. 2022 Nov 5;24. doi: 10.1016/j.comtox.2022.100250.

Abstract

Per- and Polyfluoroalkyl substances (PFAS) are a class of synthetic chemicals that are in widespread use and present concerns for persistence, bioaccumulation and toxicity. Whilst a handful of PFAS have been characterised for their hazard profiles, the vast majority of PFAS have not been studied. The US Environmental Protection Agency (EPA) undertook a research project to screen ~150 PFAS through an array of different high throughput toxicity and toxicokinetic tests in order to inform chemical category and read-across approaches. A previous publication described the rationale behind the selection of an initial set of 75 PFAS, whereas herein, we describe how various category approaches were applied and extended to inform the selection of a second set of 75 PFAS from our library of approximately 430 commercially procured PFAS. In particular, we focus on the challenges in grouping PFAS for prospective analysis and how we have sought to develop and apply objective structure-based categories to profile the testing library and other PFAS inventories. We additionally illustrate how these categories can be enriched with other information to facilitate read-across inferences once experimental data become available. The availability of flexible, objective, reproducible and chemically intuitive categories to explore PFAS constitutes an important step forward in prioritising PFAS for further testing and assessment.

摘要

全氟和多氟烷基物质(PFAS)是一类广泛使用的合成化学品,因其持久性、生物累积性和毒性而备受关注。虽然少数PFAS的危害特征已得到表征,但绝大多数PFAS尚未得到研究。美国环境保护局(EPA)开展了一个研究项目,通过一系列不同的高通量毒性和毒代动力学测试对约150种PFAS进行筛选,以便为化学类别和类推方法提供依据。之前的一篇出版物描述了选择最初一组75种PFAS的背后原理,而在此文中,我们描述了如何应用和扩展各种类别方法,以便从我们约430种商业采购的PFAS库中选择第二组75种PFAS。特别是,我们关注将PFAS分组进行前瞻性分析时面临的挑战,以及我们如何寻求开发和应用基于客观结构的类别来描述测试库和其他PFAS清单。我们还举例说明了如何用其他信息丰富这些类别,以便在获得实验数据后促进类推推断。提供灵活、客观、可重复且具有化学直观性的类别来探索PFAS,是在为进一步测试和评估确定PFAS优先级方面向前迈出的重要一步。

相似文献

4
A New CSRML Structure-Based Fingerprint Method for Profiling and Categorizing Per- and Polyfluoroalkyl Substances (PFAS).
Chem Res Toxicol. 2023 Mar 20;36(3):508-534. doi: 10.1021/acs.chemrestox.2c00403. Epub 2023 Mar 2.
6
Systematic Evidence Map for Over One Hundred and Fifty Per- and Polyfluoroalkyl Substances (PFAS).
Environ Health Perspect. 2022 May;130(5):56001. doi: 10.1289/EHP10343. Epub 2022 May 17.
7
Evaluation of Per- and Polyfluoroalkyl Substances (PFAS) Toxicity Testing for Developmental Neurotoxicity.
Chem Res Toxicol. 2023 Mar 20;36(3):402-419. doi: 10.1021/acs.chemrestox.2c00344. Epub 2023 Feb 23.
8
Strategies for grouping per- and polyfluoroalkyl substances (PFAS) to protect human and environmental health.
Environ Sci Process Impacts. 2020 Jul 1;22(7):1444-1460. doi: 10.1039/d0em00147c. Epub 2020 Jun 4.
10
Plasma Protein Binding Evaluations of Per- and Polyfluoroalkyl Substances for Category-Based Toxicokinetic Assessment.
Chem Res Toxicol. 2023 Jun 19;36(6):870-881. doi: 10.1021/acs.chemrestox.3c00003. Epub 2023 May 15.

引用本文的文献

本文引用的文献

3
A New OECD Definition for Per- and Polyfluoroalkyl Substances.
Environ Sci Technol. 2021 Dec 7;55(23):15575-15578. doi: 10.1021/acs.est.1c06896. Epub 2021 Nov 9.
5
High-Throughput Transcriptomics Platform for Screening Environmental Chemicals.
Toxicol Sci. 2021 Apr 27;181(1):68-89. doi: 10.1093/toxsci/kfab009.
6
Enabling High-Throughput Searches for Multiple Chemical Data Using the U.S.-EPA CompTox Chemicals Dashboard.
J Chem Inf Model. 2021 Feb 22;61(2):565-570. doi: 10.1021/acs.jcim.0c01273. Epub 2021 Jan 22.
7
9
The Tox21 10K Compound Library: Collaborative Chemistry Advancing Toxicology.
Chem Res Toxicol. 2021 Feb 15;34(2):189-216. doi: 10.1021/acs.chemrestox.0c00264. Epub 2020 Nov 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验