Suppr超能文献

使用分子变换器进行试剂预测可提高反应数据质量。

Reagent prediction with a molecular transformer improves reaction data quality.

作者信息

Andronov Mikhail, Voinarovska Varvara, Andronova Natalia, Wand Michael, Clevert Djork-Arné, Schmidhuber Jürgen

机构信息

IDSIA, USI, SUPSI 6900 Lugano Switzerland

Machine Learning Research, Pfizer Worldwide Research Development and Medical Linkstr.10 Berlin Germany.

出版信息

Chem Sci. 2023 Mar 1;14(12):3235-3246. doi: 10.1039/d2sc06798f. eCollection 2023 Mar 22.

Abstract

Automated synthesis planning is key for efficient generative chemistry. Since reactions of given reactants may yield different products depending on conditions such as the chemical context imposed by specific reagents, computer-aided synthesis planning should benefit from recommendations of reaction conditions. Traditional synthesis planning software, however, typically proposes reactions without specifying such conditions, relying on human organic chemists who know the conditions to carry out suggested reactions. In particular, reagent prediction for arbitrary reactions, a crucial aspect of condition recommendation, has been largely overlooked in cheminformatics until recently. Here we employ the Molecular Transformer, a state-of-the-art model for reaction prediction and single-step retrosynthesis, to tackle this problem. We train the model on the US patents dataset (USPTO) and test it on Reaxys to demonstrate its out-of-distribution generalization capabilities. Our reagent prediction model also improves the quality of product prediction: the Molecular Transformer is able to substitute the reagents in the noisy USPTO data with reagents that enable product prediction models to outperform those trained on plain USPTO. This makes it possible to improve upon the state-of-the-art in reaction product prediction on the USPTO MIT benchmark.

摘要

自动化合成规划是高效生成化学的关键。由于给定反应物的反应可能会根据特定试剂所施加的化学环境等条件产生不同的产物,计算机辅助合成规划应受益于反应条件的建议。然而,传统的合成规划软件通常在不指定此类条件的情况下提出反应,依赖于知道如何进行建议反应条件的有机化学家。特别是,任意反应的试剂预测作为条件推荐的一个关键方面,直到最近在化学信息学中在很大程度上被忽视。在这里,我们使用分子变换器(Molecular Transformer),一种用于反应预测和单步逆合成的最先进模型,来解决这个问题。我们在美国专利数据集(USPTO)上训练该模型,并在Reaxys上对其进行测试,以证明其分布外泛化能力。我们的试剂预测模型还提高了产物预测的质量:分子变换器能够用使产物预测模型优于在普通USPTO上训练的模型的试剂来替代噪声较大的USPTO数据中的试剂。这使得在USPTO MIT基准上改进反应产物预测的现有技术水平成为可能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36cb/10034139/d424153ec44a/d2sc06798f-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验