Zeng Tao, Jin Zhehao, Zheng Shuangjia, Yu Tao, Wu Ruibo
School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China.
Center for Synthetic Biochemistry, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen 518055, P. R. China.
JACS Au. 2024 Jul 3;4(7):2492-2502. doi: 10.1021/jacsau.4c00228. eCollection 2024 Jul 22.
Illuminating synthetic pathways is essential for producing valuable chemicals, such as bioactive molecules. Chemical and biological syntheses are crucial, and their integration often leads to more efficient and sustainable pathways. Despite the rapid development of retrosynthesis models, few of them consider both chemical and biological syntheses, hindering the pathway design for high-value chemicals. Here, we propose BioNavi by innovating multitask learning and reaction templates into the deep learning-driven model to design hybrid synthesis pathways in a more interpretable manner. BioNavi outperforms existing approaches on different data sets, achieving a 75% hit rate in replicating reported biosynthetic pathways and displaying superior ability in designing hybrid synthesis pathways. Additional case studies further illustrate the potential application of BioNavi in a de novo pathway design. The enhanced web server (http://biopathnavi.qmclab.com/bionavi/) simplifies input operations and implements step-by-step exploration according to user experience. We show that BioNavi is a handy navigator for designing synthetic pathways for various chemicals.
阐明合成途径对于生产有价值的化学品(如生物活性分子)至关重要。化学合成和生物合成至关重要,它们的整合通常会产生更高效、更可持续的途径。尽管逆合成模型发展迅速,但其中很少有模型同时考虑化学合成和生物合成,这阻碍了高价值化学品的途径设计。在这里,我们通过将多任务学习和反应模板创新地引入深度学习驱动的模型中,提出了BioNavi,以便以更具可解释性的方式设计混合合成途径。BioNavi在不同数据集上优于现有方法,在复制已报道的生物合成途径方面达到了75%的命中率,并在设计混合合成途径方面表现出卓越的能力。额外的案例研究进一步说明了BioNavi在从头途径设计中的潜在应用。增强型网络服务器(http://biopathnavi.qmclab.com/bionavi/)简化了输入操作,并根据用户体验实现了逐步探索。我们表明,BioNavi是设计各种化学品合成途径的便捷导航工具。