Department of Mathematics, ETH Zürich, Zurich, Switzerland.
Department of Pure Mathematics and Mathematical Statistics, University of Cambridge, Cambridge, UK.
Philos Trans A Math Phys Eng Sci. 2023 May 15;381(2247):20220150. doi: 10.1098/rsta.2022.0150. Epub 2023 Mar 27.
We exhibit examples of high-dimensional unimodal posterior distributions arising in nonlinear regression models with Gaussian process priors for which Markov chain Monte Carlo (MCMC) methods can take an exponential run-time to enter the regions where the bulk of the posterior measure concentrates. Our results apply to worst-case initialized ('cold start') algorithms that are local in the sense that their step sizes cannot be too large on average. The counter-examples hold for general MCMC schemes based on gradient or random walk steps, and the theory is illustrated for Metropolis-Hastings adjusted methods such as preconditioned Crank-Nicolson and Metropolis-adjusted Langevin algorithm. This article is part of the theme issue 'Bayesian inference: challenges, perspectives, and prospects'.
我们展示了在具有高斯过程先验的非线性回归模型中出现的高维单峰后验分布的例子,对于这些模型,马尔可夫链蒙特卡罗(MCMC)方法可能需要指数级的运行时间才能进入后验度量大部分集中的区域。我们的结果适用于最坏情况下初始化(“冷启动”)的算法,这些算法在局部意义上是指其步长平均不能太大。反例适用于基于梯度或随机游走步长的一般 MCMC 方案,并且该理论还说明了像预处理的 Crank-Nicolson 和 Metropolis 调整 Langevin 算法这样的 Metropolis-Hastings 调整方法。本文是“贝叶斯推断:挑战、观点和前景”主题问题的一部分。