Machine Learning Group, CWI, Amsterdam, The Netherlands.
Mathematical Institute, Leiden University, Leiden, The Netherlands.
Philos Trans A Math Phys Eng Sci. 2023 May 15;381(2247):20220146. doi: 10.1098/rsta.2022.0146. Epub 2023 Mar 27.
We develop a representation of a decision maker's uncertainty based on e-variables. Like the Bayesian posterior, this allows for making predictions against arbitrary loss functions that may not be specified ex ante. Unlike the Bayesian posterior, it provides risk bounds that have frequentist validity irrespective of prior adequacy: if the e-collection (which plays a role analogous to the Bayesian prior) is chosen badly, the bounds get loose rather than wrong, making decision rules safer than Bayesian ones. The resulting quasi-conditional paradigm is illustrated by re-interpreting a previous influential partial Bayes-frequentist unification, , in terms of e-posteriors. This article is part of the theme issue 'Bayesian inference: challenges, perspectives, and prospects'.
我们基于 e-变量开发了决策者不确定性的表示方法。与贝叶斯后验概率一样,这允许针对任意可能未事先指定的损失函数进行预测。与贝叶斯后验概率不同,它提供了风险界限,无论先验是否充分,都具有频率有效性:如果 e-集合(类似于贝叶斯先验的作用)选择不当,则界限会放宽而不是错误,从而使决策规则比贝叶斯规则更安全。通过重新解释以前有影响力的部分贝叶斯-频率主义统一,以 e-后验概率的形式说明了由此产生的准条件范式。本文是“贝叶斯推理:挑战、观点和前景”主题问题的一部分。