Suppr超能文献

基于预测的可交换序列不确定性量化。

Prediction-based uncertainty quantification for exchangeable sequences.

机构信息

Department of Decision Sciences, Bocconi University, via Roentgen 1, 20136 Milano, Italy.

出版信息

Philos Trans A Math Phys Eng Sci. 2023 May 15;381(2247):20220142. doi: 10.1098/rsta.2022.0142. Epub 2023 Mar 27.

Abstract

Prediction has a central role in the foundations of Bayesian statistics and is now the main focus in many areas of machine learning, in contrast to the more classical focus on inference. We discuss that, in the basic setting of random sampling-that is, in the Bayesian approach, exchangeability-uncertainty expressed by the posterior distribution and credible intervals can indeed be understood in terms of prediction. The posterior law on the unknown distribution is centred on the predictive distribution and we prove that it is marginally asymptotically Gaussian with variance depending on the , i.e. on how the predictive rule incorporates information as new observations become available. This allows to obtain asymptotic credible intervals only based on the predictive rule (without having to specify the model and the prior law), sheds light on frequentist coverage as related to the predictive learning rule, and, we believe, opens a new perspective towards a notion of that seems to call for further research. This article is part of the theme issue 'Bayesian inference: challenges, perspectives, and prospects'.

摘要

预测在贝叶斯统计学的基础中起着核心作用,现在在机器学习的许多领域中成为主要关注点,这与更传统的关注推理形成对比。我们讨论了,在随机抽样的基本设置中,即贝叶斯方法中的可交换性-不确定性可以在后验分布和可信区间中以预测的形式来理解。未知分布的后验法则以预测分布为中心,我们证明它在边缘上是渐近正态的,方差取决于 ,即预测规则如何随着新观测值的出现而包含信息。这允许仅基于预测规则(无需指定模型和先验概率)来获得渐近可信区间,揭示了与预测学习规则相关的频率覆盖,并相信为 概念提供了新的视角,这似乎需要进一步研究。本文是主题为“贝叶斯推断:挑战、视角和前景”的一部分。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验