Suppr超能文献

目前基于序列的模型可以捕捉启动子中的基因表达决定因素,但大多忽略了远端增强子。

Current sequence-based models capture gene expression determinants in promoters but mostly ignore distal enhancers.

机构信息

School of Computation, Information and Technology, Technical University of Munich, Garching, Germany.

Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany.

出版信息

Genome Biol. 2023 Mar 27;24(1):56. doi: 10.1186/s13059-023-02899-9.

Abstract

BACKGROUND

The largest sequence-based models of transcription control to date are obtained by predicting genome-wide gene regulatory assays across the human genome. This setting is fundamentally correlative, as those models are exposed during training solely to the sequence variation between human genes that arose through evolution, questioning the extent to which those models capture genuine causal signals.

RESULTS

Here we confront predictions of state-of-the-art models of transcription regulation against data from two large-scale observational studies and five deep perturbation assays. The most advanced of these sequence-based models, Enformer, by and large, captures causal determinants of human promoters. However, models fail to capture the causal effects of enhancers on expression, notably in medium to long distances and particularly for highly expressed promoters. More generally, the predicted impact of distal elements on gene expression predictions is small and the ability to correctly integrate long-range information is significantly more limited than the receptive fields of the models suggest. This is likely caused by the escalating class imbalance between actual and candidate regulatory elements as distance increases.

CONCLUSIONS

Our results suggest that sequence-based models have advanced to the point that in silico study of promoter regions and promoter variants can provide meaningful insights and we provide practical guidance on how to use them. Moreover, we foresee that it will require significantly more and particularly new kinds of data to train models accurately accounting for distal elements.

摘要

背景

迄今为止,最大的基于序列的转录控制模型是通过预测人类基因组中全基因组基因调控测定来获得的。这种设置从根本上是相关的,因为这些模型在训练过程中仅暴露于通过进化产生的人类基因之间的序列变异,这就提出了这些模型在多大程度上捕捉到真正的因果信号的问题。

结果

在这里,我们将最先进的转录调控模型的预测与两项大规模观察性研究和五项深度扰动测定的数据进行了对比。在这些基于序列的模型中,最先进的模型 Enformer 在很大程度上捕捉到了人类启动子的因果决定因素。然而,这些模型未能捕捉到增强子对表达的因果影响,特别是在中长距离上,特别是对于高度表达的启动子。更一般地说,远端元件对基因表达预测的预测影响很小,正确整合远程信息的能力远低于模型所暗示的感受野。这可能是由于随着距离的增加,实际和候选调节元件之间的类不平衡不断加剧造成的。

结论

我们的结果表明,基于序列的模型已经发展到这样的程度,即对启动子区域和启动子变体的计算机研究可以提供有意义的见解,我们还提供了如何使用它们的实用指南。此外,我们预计需要更多特别是新的数据集来训练能够准确解释远端元件的模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bb0/10045630/6ba5c1c78a3d/13059_2023_2899_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验