Rodriguez Martin Laura, Ottenbros Ilse, Vogel Nina, Kolossa-Gehring Marike, Schmidt Phillipp, Řiháčková Katarína, Juliá Molina Miguel, Varea-Jiménez Elena, Govarts Eva, Pedraza-Diaz Susana, Lebret Erik, Vlaanderen Jelle, Luijten Mirjam
Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium.
Institute for Risk Assessment Sciences (IRAS), Utrecht University, 3584 CM Utrecht, The Netherlands.
Toxics. 2023 Feb 22;11(3):204. doi: 10.3390/toxics11030204.
Human health risk assessment of chemical mixtures is complex due to the almost infinite number of possible combinations of chemicals to which people are exposed to on a daily basis. Human biomonitoring (HBM) approaches can provide inter alia information on the chemicals that are in our body at one point in time. Network analysis applied to such data may provide insight into real-life mixtures by visualizing chemical exposure patterns. The identification of groups of more densely correlated biomarkers, so-called "communities", within these networks highlights which combination of substances should be considered in terms of real-life mixtures to which a population is exposed. We applied network analyses to HBM datasets from Belgium, Czech Republic, Germany, and Spain, with the aim to explore its added value for exposure and risk assessment. The datasets varied in study population, study design, and chemicals analysed. Sensitivity analysis was performed to address the influence of different approaches to standardise for creatinine content of urine. Our approach demonstrates that network analysis applied to HBM data of highly varying origin provides useful information with regards to the existence of groups of biomarkers that are densely correlated. This information is relevant for regulatory risk assessment, as well as for the design of relevant mixture exposure experiments.
由于人们日常接触的化学物质可能的组合几乎无穷无尽,化学混合物的人体健康风险评估十分复杂。人体生物监测(HBM)方法尤其能够提供有关某一时刻体内化学物质的信息。将网络分析应用于此类数据,通过可视化化学物质暴露模式,或许能够洞察实际生活中的混合物情况。在这些网络中识别出相关性更强的生物标志物群组,即所谓的“群落”,能够凸显在评估人群接触的实际生活混合物时应考虑哪些物质组合。我们将网络分析应用于来自比利时、捷克共和国、德国和西班牙的人体生物监测数据集,旨在探索其在暴露和风险评估方面的附加价值。这些数据集在研究人群、研究设计以及分析的化学物质方面存在差异。进行了敏感性分析,以探讨不同方法对尿液肌酐含量进行标准化处理的影响。我们的方法表明,将网络分析应用于来源高度多样的人体生物监测数据,能够提供有关紧密相关生物标志物群组存在情况的有用信息。该信息对于监管风险评估以及相关混合物暴露实验的设计均具有重要意义。