Xu Qingguo, Zhu Jiajie, Luo Yin, Li Weimin
School of Computer Engineering and Science, Shanghai University, Shanghai, China.
School of Life Sciences, East China Normal University, Shanghai, China.
Interdiscip Sci. 2023 Jun;15(2):202-216. doi: 10.1007/s12539-023-00553-3. Epub 2023 Mar 28.
Gene expression as an unstable form of cell characterization has been widely used for single-cell analyses. Although there are cell-specific networks (CSN) to explore stable gene associations within a single cell, the amount of information in CSN is huge and there is no method to measure the interaction level between genes. Therefore, this paper presents a two-level approach to reconstructing single-cell features, which transforms the original gene expression feature into the gene ontology feature and gene interaction feature. Specifically, we first squeeze all CSNs into a cell network feature matrix (CNFM) by fusing the global position and neighborhood influence of genes. Next, we propose a computational method of gene gravitation based on CNFM to quantify the extent of gene-gene interaction, and we can construct a gene gravitation network for single cells. Finally, we further design a novel index of gene gravitation entropy to quantitatively evaluate the level of single-cell differentiation. The experiments on eight different scRNA-seq datasets show the effectiveness and broad application prospects of our method.
基因表达作为一种不稳定的细胞表征形式,已被广泛用于单细胞分析。尽管存在细胞特异性网络(CSN)来探索单个细胞内的稳定基因关联,但CSN中的信息量巨大,且没有方法来测量基因之间的相互作用水平。因此,本文提出了一种两级方法来重建单细胞特征,该方法将原始基因表达特征转化为基因本体特征和基因相互作用特征。具体而言,我们首先通过融合基因的全局位置和邻域影响,将所有CSN压缩为一个细胞网络特征矩阵(CNFM)。接下来,我们基于CNFM提出了一种基因引力计算方法,以量化基因-基因相互作用的程度,并可为单细胞构建一个基因引力网络。最后,我们进一步设计了一种新颖的基因引力熵指标,以定量评估单细胞分化水平。在八个不同的scRNA-seq数据集上进行的实验表明了我们方法的有效性和广阔的应用前景。