Suppr超能文献

利用应用于序数模式统计和频谱量的非线性降维从多通道脑电图时间序列中提取稳健的生物标志物。

Extracting Robust Biomarkers From Multichannel EEG Time Series Using Nonlinear Dimensionality Reduction Applied to Ordinal Pattern Statistics and Spectral Quantities.

作者信息

Kottlarz Inga, Berg Sebastian, Toscano-Tejeida Diana, Steinmann Iris, Bähr Mathias, Luther Stefan, Wilke Melanie, Parlitz Ulrich, Schlemmer Alexander

机构信息

Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany.

Institute for the Dynamics of Complex Systems, Georg-August-Universität Göttingen, Göttingen, Germany.

出版信息

Front Physiol. 2021 Feb 1;11:614565. doi: 10.3389/fphys.2020.614565. eCollection 2020.

Abstract

In this study, ordinal pattern analysis and classical frequency-based EEG analysis methods are used to differentiate between EEGs of different age groups as well as individuals. As characteristic features, functional connectivity as well as single-channel measures in both the time and frequency domain are considered. We compare the separation power of each feature set after nonlinear dimensionality reduction using t-distributed stochastic neighbor embedding and demonstrate that ordinal pattern-based measures yield results comparable to frequency-based measures applied to preprocessed data, and outperform them if applied to raw data. Our analysis yields no significant differences in performance between single-channel features and functional connectivity features regarding the question of age group separation.

摘要

在本研究中,使用序数模式分析和基于经典频率的脑电图(EEG)分析方法来区分不同年龄组以及个体的脑电图。作为特征,考虑了功能连接以及时域和频域中的单通道测量。我们使用t分布随机邻域嵌入在非线性降维后比较每个特征集的分离能力,并证明基于序数模式的测量产生的结果与应用于预处理数据的基于频率的测量结果相当,并且如果应用于原始数据则优于它们。关于年龄组分离问题,我们的分析在单通道特征和功能连接特征之间的性能上没有发现显著差异。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4671/7882607/008095968a16/fphys-11-614565-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验