Suppr超能文献

基于亚甲蓝聚丙稀酰胺纳米粒子标记的前列腺癌光声光谱分析评估其侵袭性。

Photoacoustic Spectral Analysis for Evaluating the Aggressiveness of Prostate Cancer Labeled by Methylene Blue Polyacrylamide Nanoparticles.

机构信息

Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.

Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.

出版信息

Biosensors (Basel). 2023 Mar 20;13(3):403. doi: 10.3390/bios13030403.

Abstract

Evaluating the aggressiveness of prostate cancer (PCa) is crucial for PCa diagnosis and prognosis. Previously, studies have shown that photoacoustic spectral analysis (PASA) can assess prostate tissue microarchitecture for evaluating the aggressiveness of PCa. In this study, in a transgenic mouse (TRAMP) model of PCa, we utilized methylene blue polyacrylamide nanoparticles (MB PAA NPs) to label the cancer cells in prostate in vivo. MB PAA NPs can specifically target proliferating cancer cells as a contrast agent, allowing photoacoustic (PA) imaging to better detect PCa tumors, and also assessing prostate glandular architecture. With the PA signals from the prostates measured simultaneously by a needle hydrophone and a PA and ultrasound (US) dual-imaging system, we conducted PASA and correlated the quantified spectral parameter slopes with the cancer grading from histopathology. The PASA results from 18 mice showed significant differences between normal and cancer, and also between low-score cancer and high-score cancer. This study in the clinically relevant TRAMP model of PCa demonstrated that PA imaging and PASA, powered by MB PAA NPs that can label the PCa microarchitectures in vivo after systemic administration, can detect PCa and, more importantly, evaluate cancer aggressiveness.

摘要

评估前列腺癌 (PCa) 的侵袭性对于 PCa 的诊断和预后至关重要。先前的研究表明,光声光谱分析 (PASA) 可评估前列腺组织的微观结构,从而评估 PCa 的侵袭性。在本研究中,我们利用亚甲蓝聚丙烯酰胺纳米颗粒 (MB PAA NPs) 在前列腺癌的转基因小鼠 (TRAMP) 模型中对前列腺内的癌细胞进行体内标记。MB PAA NPs 可作为对比剂特异性靶向增殖的癌细胞,使光声 (PA) 成像能够更好地检测 PCa 肿瘤,并评估前列腺腺管结构。通过针状水听器和 PA 和超声 (US) 双成像系统同时测量来自前列腺的 PA 信号,我们进行了 PASA,并将定量光谱参数斜率与组织病理学的癌症分级相关联。来自 18 只小鼠的 PASA 结果表明,正常和癌症之间以及低评分癌症和高评分癌症之间存在显著差异。这项在具有临床相关性的 PCa TRAMP 模型中的研究表明,PA 成像和 PASA 可通过系统给药后可对 PCa 微结构进行体内标记的 MB PAA NPs 来检测 PCa,更重要的是,还可以评估癌症的侵袭性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f499/10046330/2fe306c6fe90/biosensors-13-00403-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验