Suppr超能文献

CoVA:一种用于门诊筛查的敏锐度评分,可预测 2019 冠状病毒病的预后。

CoVA: An Acuity Score for Outpatient Screening that Predicts Coronavirus Disease 2019 Prognosis.

机构信息

Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA.

Harvard Medical School, Boston, Massachusetts, USA.

出版信息

J Infect Dis. 2021 Jan 4;223(1):38-46. doi: 10.1093/infdis/jiaa663.

Abstract

BACKGROUND

We sought to develop an automatable score to predict hospitalization, critical illness, or death for patients at risk for coronavirus disease 2019 (COVID-19) presenting for urgent care.

METHODS

We developed the COVID-19 Acuity Score (CoVA) based on a single-center study of adult outpatients seen in respiratory illness clinics or the emergency department. Data were extracted from the Partners Enterprise Data Warehouse, and split into development (n = 9381, 7 March-2 May) and prospective (n = 2205, 3-14 May) cohorts. Outcomes were hospitalization, critical illness (intensive care unit or ventilation), or death within 7 days. Calibration was assessed using the expected-to-observed event ratio (E/O). Discrimination was assessed by area under the receiver operating curve (AUC).

RESULTS

In the prospective cohort, 26.1%, 6.3%, and 0.5% of patients experienced hospitalization, critical illness, or death, respectively. CoVA showed excellent performance in prospective validation for hospitalization (expected-to-observed ratio [E/O]: 1.01; AUC: 0.76), for critical illness (E/O: 1.03; AUC: 0.79), and for death (E/O: 1.63; AUC: 0.93). Among 30 predictors, the top 5 were age, diastolic blood pressure, blood oxygen saturation, COVID-19 testing status, and respiratory rate.

CONCLUSIONS

CoVA is a prospectively validated automatable score for the outpatient setting to predict adverse events related to COVID-19 infection.

摘要

背景

我们旨在开发一种自动化评分系统,以预测因患 2019 冠状病毒病(COVID-19)而有风险的患者在紧急护理就诊时的住院、重症或死亡情况。

方法

我们基于单中心成年门诊患者的研究开发了 COVID-19 严重程度评分(CoVA),这些患者在呼吸疾病诊所或急诊就诊。数据从合作伙伴企业数据仓库中提取,并分为开发(n = 9381,3 月 7 日至 5 月 2 日)和前瞻性(n = 2205,5 月 3 日至 14 日)队列。结局为 7 天内住院、重症(重症监护病房或通气)或死亡。校准通过预期与观察事件比(E/O)评估。通过接受者操作特征曲线下面积(AUC)评估区分度。

结果

在前瞻性队列中,分别有 26.1%、6.3%和 0.5%的患者经历了住院、重症或死亡。CoVA 在前瞻性验证中对住院(E/O:1.01;AUC:0.76)、重症(E/O:1.03;AUC:0.79)和死亡(E/O:1.63;AUC:0.93)具有出色的性能。在 30 个预测因素中,前 5 位是年龄、舒张压、血氧饱和度、COVID-19 检测状态和呼吸频率。

结论

CoVA 是一种针对门诊环境的前瞻性验证的自动化评分系统,可预测与 COVID-19 感染相关的不良事件。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3052/7781459/1c5e71c52fa7/jiaa663f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验