Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, 6439 Garners Ferry Road, Columbia, SC 29209, USA.
Cells. 2023 Mar 15;12(6):897. doi: 10.3390/cells12060897.
As the most malignant primary brain tumor in adults, a diagnosis of glioblastoma multiforme (GBM) continues to carry a poor prognosis. GBM is characterized by cytoprotective homeostatic processes such as the activation of autophagy, capability to confer therapeutic resistance, evasion of apoptosis, and survival strategy even in the hypoxic and nutrient-deprived tumor microenvironment. The current gold standard of therapy, which involves radiotherapy and concomitant and adjuvant chemotherapy with temozolomide (TMZ), has been a game-changer for patients with GBM, relatively improving both overall survival (OS) and progression-free survival (PFS); however, TMZ is now well-known to upregulate undesirable cytoprotective autophagy, limiting its therapeutic efficacy for induction of apoptosis in GBM cells. The identification of targets utilizing bioinformatics-driven approaches, advancement of modern molecular biology technologies such as clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein (Cas9) or CRISPR-Cas9 genome editing, and usage of microRNA (miRNA)-mediated regulation of gene expression led to the selection of many novel targets for new therapeutic development and the creation of promising combination therapies. This review explores the current state of advanced bioinformatics analysis and genetic technologies and their utilization for synergistic combination with TMZ in the context of inhibition of autophagy for controlling the growth of GBM.
作为成人中最恶性的原发性脑肿瘤,胶质母细胞瘤(GBM)的诊断仍然预后不良。GBM 的特征是细胞保护性的稳态过程,如自噬的激活,赋予治疗抗性的能力,逃避细胞凋亡,以及即使在缺氧和营养缺乏的肿瘤微环境中也能生存的策略。目前的治疗金标准包括放疗和替莫唑胺(TMZ)的同时和辅助化疗,这一标准改变了 GBM 患者的治疗格局,相对提高了总生存期(OS)和无进展生存期(PFS);然而,TMZ 现在已知会上调不良的细胞保护性自噬,限制了其在诱导 GBM 细胞凋亡方面的治疗效果。利用生物信息学驱动的方法识别靶点,以及应用现代分子生物学技术,如簇状规则间隔短回文重复(CRISPR)-CRISPR 相关蛋白(Cas9)或 CRISPR-Cas9 基因组编辑,以及利用 microRNA(miRNA)介导的基因表达调控,导致了许多新的治疗靶点的选择,用于新的治疗开发和有前途的联合治疗方案的创建。这篇综述探讨了先进的生物信息学分析和遗传技术的现状,以及它们在 TMZ 抑制自噬以控制 GBM 生长方面的协同联合应用。