Suppr超能文献

标注胸部X光文本报告时的性能与一致性——基于深度学习的优先级排序和检测系统开发的初步步骤

Performance and Agreement When Annotating Chest X-ray Text Reports-A Preliminary Step in the Development of a Deep Learning-Based Prioritization and Detection System.

作者信息

Li Dana, Pehrson Lea Marie, Bonnevie Rasmus, Fraccaro Marco, Thrane Jakob, Tøttrup Lea, Lauridsen Carsten Ammitzbøl, Butt Balaganeshan Sedrah, Jankovic Jelena, Andersen Tobias Thostrup, Mayar Alyas, Hansen Kristoffer Lindskov, Carlsen Jonathan Frederik, Darkner Sune, Nielsen Michael Bachmann

机构信息

Department of Diagnostic Radiology, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark.

Department of Clinical Medicine, University of Copenhagen, 2100 Copenhagen, Denmark.

出版信息

Diagnostics (Basel). 2023 Mar 11;13(6):1070. doi: 10.3390/diagnostics13061070.

Abstract

A chest X-ray report is a communicative tool and can be used as data for developing artificial intelligence-based decision support systems. For both, consistent understanding and labeling is important. Our aim was to investigate how readers would comprehend and annotate 200 chest X-ray reports. Reports written between 1 January 2015 and 11 March 2022 were selected based on search words. Annotators included three board-certified radiologists, two trained radiologists (physicians), two radiographers (radiological technicians), a non-radiological physician, and a medical student. Consensus labels by two or more of the experienced radiologists were considered "gold standard". Matthew's correlation coefficient (MCC) was calculated to assess annotation performance, and descriptive statistics were used to assess agreement between individual annotators and labels. The intermediate radiologist had the best correlation to "gold standard" (MCC 0.77). This was followed by the novice radiologist and medical student (MCC 0.71 for both), the novice radiographer (MCC 0.65), non-radiological physician (MCC 0.64), and experienced radiographer (MCC 0.57). Our findings showed that for developing an artificial intelligence-based support system, if trained radiologists are not available, annotations from non-radiological annotators with basic and general knowledge may be more aligned with radiologists compared to annotations from sub-specialized medical staff, if their sub-specialization is outside of diagnostic radiology.

摘要

胸部X光报告是一种交流工具,可作为开发基于人工智能的决策支持系统的数据。对于这两者而言,一致的理解和标注都很重要。我们的目的是研究读者如何理解和注释200份胸部X光报告。根据搜索词选择了2015年1月1日至2022年3月11日期间撰写的报告。注释者包括三名获得董事会认证的放射科医生、两名经过培训的放射科医生(医师)、两名放射技师(放射学技术人员)、一名非放射科医师和一名医学生。两名或更多经验丰富的放射科医生达成的共识标签被视为“金标准”。计算马修相关系数(MCC)以评估注释性能,并使用描述性统计来评估个体注释者与标签之间的一致性。中级放射科医生与“金标准”的相关性最佳(MCC为0.77)。其次是新手放射科医生和医学生(两者的MCC均为0.71)、新手放射技师(MCC为0.65)、非放射科医师(MCC为0.64)和经验丰富的放射技师(MCC为0.57)。我们的研究结果表明,对于开发基于人工智能的支持系统,如果没有经过培训的放射科医生,与专科医务人员的注释相比,具有基本和一般知识的非放射科注释者的注释可能与放射科医生的注释更一致,前提是他们的专科领域不在诊断放射学范围内。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e829/10047142/f2a05d95a95d/diagnostics-13-01070-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验