Lee Chih-Hui, Pan Cheng-Tang, Lee Ming-Chan, Wang Chih-Hsuan, Chang Chun-Yung, Shiue Yow-Ling
Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan.
Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-sen University, Kaohsiung 804, Taiwan.
Diagnostics (Basel). 2024 Sep 23;14(18):2099. doi: 10.3390/diagnostics14182099.
This study aims to utilize advanced artificial intelligence (AI) image recog-nition technologies to establish a robust system for identifying features in lung computed tomog-raphy (CT) scans, thereby detecting respiratory infections such as SARS-CoV-2 pneumonia. Spe-cifically, the research focuses on developing a new model called Residual-Dense-Attention Gates U-Net (RDAG U-Net) to improve accuracy and efficiency in identification. : This study employed Attention U-Net, Attention Res U-Net, and the newly developed RDAG U-Net model. RDAG U-Net extends the U-Net architecture by incorporating ResBlock and DenseBlock modules in the encoder to retain training parameters and reduce computation time. The training dataset in-cludes 3,520 CT scans from an open database, augmented to 10,560 samples through data en-hancement techniques. The research also focused on optimizing convolutional architectures, image preprocessing, interpolation methods, data management, and extensive fine-tuning of training parameters and neural network modules. The RDAG U-Net model achieved an outstanding accuracy of 93.29% in identifying pulmonary lesions, with a 45% reduction in computation time compared to other models. The study demonstrated that RDAG U-Net performed stably during training and exhibited good generalization capability by evaluating loss values, model-predicted lesion annotations, and validation-epoch curves. Furthermore, using ITK-Snap to convert 2D pre-dictions into 3D lung and lesion segmentation models, the results delineated lesion contours, en-hancing interpretability. The RDAG U-Net model showed significant improvements in accuracy and efficiency in the analysis of CT images for SARS-CoV-2 pneumonia, achieving a 93.29% recognition accuracy and reducing computation time by 45% compared to other models. These results indicate the potential of the RDAG U-Net model in clinical applications, as it can accelerate the detection of pulmonary lesions and effectively enhance diagnostic accuracy. Additionally, the 2D and 3D visualization results allow physicians to understand lesions' morphology and distribution better, strengthening decision support capabilities and providing valuable medical diagnosis and treatment planning tools.
本研究旨在利用先进的人工智能(AI)图像识别技术建立一个强大的系统,用于识别肺部计算机断层扫描(CT)图像中的特征,从而检测诸如SARS-CoV-2肺炎等呼吸道感染。具体而言,该研究专注于开发一种名为残差密集注意力门控U-Net(RDAG U-Net)的新模型,以提高识别的准确性和效率。本研究采用了注意力U-Net、注意力残差U-Net以及新开发的RDAG U-Net模型。RDAG U-Net通过在编码器中合并残差块(ResBlock)和密集块(DenseBlock)模块来扩展U-Net架构,以保留训练参数并减少计算时间。训练数据集包括来自一个开放数据库的3520份CT扫描图像,通过数据增强技术扩充至10560个样本。该研究还专注于优化卷积架构、图像预处理、插值方法、数据管理以及对训练参数和神经网络模块进行广泛的微调。RDAG U-Net模型在识别肺部病变方面达到了93.29%的出色准确率,与其他模型相比,计算时间减少了45%。该研究表明,RDAG U-Net在训练过程中表现稳定,通过评估损失值、模型预测的病变标注以及验证轮次曲线,展现出良好的泛化能力。此外,使用ITK-Snap将二维预测转换为三维肺部和病变分割模型,结果描绘出病变轮廓,增强了可解释性。RDAG U-Net模型在SARS-CoV-2肺炎CT图像分析中,在准确性和效率方面有显著提升,识别准确率达到93.29%,与其他模型相比计算时间减少了45%。这些结果表明RDAG U-Net模型在临床应用中的潜力,因为它可以加速肺部病变的检测并有效提高诊断准确性。此外,二维和三维可视化结果使医生能够更好地了解病变的形态和分布,增强决策支持能力,并提供有价值的医学诊断和治疗规划工具。