Suppr超能文献

EBOLApreD: 一种基于机器学习的网络应用程序,用于预测埃博拉病毒的细胞进入抑制剂。

EBOLApred: A machine learning-based web application for predicting cell entry inhibitors of the Ebola virus.

机构信息

Department of Biomedical Engineering, School of Engineering Sciences, College of Basic and Applied Sciences, University of Ghana, PMB LG 77, Legon, Accra LG 77, Ghana; Department of Parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences (CHS), University of Ghana, P.O. Box LG 581, Legon, Accra LG 581, Ghana.

Department of Biomedical Engineering, School of Engineering Sciences, College of Basic and Applied Sciences, University of Ghana, PMB LG 77, Legon, Accra LG 77, Ghana; West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra LG 54, Ghana.

出版信息

Comput Biol Chem. 2022 Dec;101:107766. doi: 10.1016/j.compbiolchem.2022.107766. Epub 2022 Sep 2.

Abstract

Ebola virus disease (EVD) is a highly virulent and often lethal illness that affects humans through contact with the body fluid of infected persons. Glycoprotein and matrix protein VP40 play essential roles in the virus life cycle within the host. Whilst glycoprotein mediates the entry and fusion of the virus with the host cell membrane, VP40 is also responsible for viral particle assembly and budding. This study aimed at developing machine learning models to predict small molecules as possible anti-Ebola virus compounds capable of inhibiting the activities of GP and VP40 using Ebola virus (EBOV) cell entry inhibitors from the PubChem database as training data. Predictive models were developed using five algorithms comprising random forest (RF), support vector machine (SVM), naïve Bayes (NB), k-nearest neighbor (kNN), and logistic regression (LR). The models were evaluated using a 10-fold cross-validation technique and the algorithm with the best performance was the random forest model with an accuracy of 89 %, an F1 score of 0.9, and a receiver operating characteristic curve (ROC curve) showing the area under the curve (AUC) score of 0.95. LR and SVM models also showed plausible performances with overall accuracy values of 0.84 and 0.86, respectively. The models, RF, LR, and SVM were deployed as a web server known as EBOLApred accessible via http://197.255.126.13:8000/.

摘要

埃博拉病毒病(EVD)是一种高度致命的疾病,通过与感染者的体液接触传染给人类。糖蛋白和基质蛋白 VP40 在病毒在宿主内的生命周期中起着至关重要的作用。虽然糖蛋白介导病毒与宿主细胞膜的进入和融合,但 VP40 也负责病毒颗粒的组装和出芽。本研究旨在开发机器学习模型,以预测小分子作为可能的抗埃博拉病毒化合物,这些化合物能够抑制来自 PubChem 数据库的埃博拉病毒(EBOV)细胞进入抑制剂的活性,从而抑制糖蛋白和 VP40 的活性。使用包含随机森林(RF)、支持向量机(SVM)、朴素贝叶斯(NB)、k-最近邻(kNN)和逻辑回归(LR)在内的 5 种算法来开发预测模型。使用 10 倍交叉验证技术评估模型,性能最佳的算法是随机森林模型,其准确率为 89%,F1 得分为 0.9,接收器工作特征曲线(ROC 曲线)显示曲线下面积(AUC)得分为 0.95。LR 和 SVM 模型的整体准确率分别为 0.84 和 0.86,表现也相当不错。RF、LR 和 SVM 模型已部署为一个名为 EBOLApred 的网络服务器,可通过 http://197.255.126.13:8000/ 访问。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验