Department of Radiology, Center for Rehabilitation Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Zhejiang, China
Department of Radiology, The First People's Hospital of Daishan, Zhejiang, China
Diagn Interv Radiol. 2023 Mar 29;29(2):402-409. doi: 10.4274/dir.2023.221764. Epub 2023 Feb 17.
Radiomics analysis is a promising image analysis technique. This study aims to extract a radiomics signature from baseline computed tomography (CT) to predict malignant cerebral edema (MCE) in patients with acute anterior circulation infarction after endovascular treatment (EVT).
In this retrospective study, 111 patients underwent EVT for acute ischemic stroke caused by middle cerebral artery (MCA) and/or internal carotid artery occlusion. The participants were randomly divided into two datasets: the training set (n = 77) and the test set (n = 34). The clinico-radiological profiles of all patients were collected, including cranial non-contrast-enhanced CT, CT angiography, and CT perfusion. The MCA territory on non-contrast-enhanced CT images was segmented, and the radiomics features associated with MCE were analyzed. The clinico-radiological parameters related to MCE were also identified. In addition, a routine visual radiological model based on radiological factors and a combined model comprising radiomics features and clinico-radiological factors were constructed to predict MCE.
The areas under the curve (AUCs) of the radiomics signature for predicting MCE were 0.870 ( < 0.001) and 0.837 ( = 0.002) in the training and test sets, respectively. The AUCs of the routine visual radiological model were 0.808 ( < 0.001) and 0.813 ( = 0.005) in the training and test sets, respectively. The AUCs of the model combining the radiomics signature and clinico-radiological factors were 0.924 ( < 0.001) and 0.879 ( = 0.001) in the training and test sets, respectively.
A CT image-based radiomics signature is a promising tool for predicting MCE in patients with acute anterior circulation infarction after EVT. For clinicians, it may assist in diagnostic decision-making.
放射组学分析是一种很有前途的图像分析技术。本研究旨在从基线计算机断层扫描(CT)中提取放射组学特征,以预测接受血管内治疗(EVT)后的急性前循环梗死患者的恶性脑水肿(MCE)。
在这项回顾性研究中,111 名因大脑中动脉(MCA)和/或颈内动脉闭塞引起的急性缺血性卒中患者接受了 EVT。参与者被随机分为两个数据集:训练集(n = 77)和测试集(n = 34)。收集所有患者的临床放射学特征,包括颅部非增强 CT、CT 血管造影和 CT 灌注。在非增强 CT 图像上对 MCA 区域进行分割,并分析与 MCE 相关的放射组学特征。还确定了与 MCE 相关的临床放射学参数。此外,构建了基于放射学因素的常规视觉放射学模型和包含放射组学特征和临床放射学因素的联合模型,以预测 MCE。
预测 MCE 的放射组学特征的曲线下面积(AUCs)在训练集和测试集分别为 0.870(<0.001)和 0.837(=0.002)。常规视觉放射学模型的 AUCs 在训练集和测试集分别为 0.808(<0.001)和 0.813(=0.005)。结合放射组学特征和临床放射学因素的模型的 AUCs 在训练集和测试集分别为 0.924(<0.001)和 0.879(=0.001)。
基于 CT 图像的放射组学特征是预测 EVT 后急性前循环梗死患者 MCE 的一种很有前途的工具。对于临床医生来说,它可能有助于诊断决策。