Yassin Mazen M, Zaman Asim, Lu Jiaxi, Yang Huihui, Cao Anbo, Hassan Haseeb, Han Taiyu, Miao Xiaoqiang, Shi Yongkang, Guo Yingwei, Luo Yu, Kang Yan
School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China.
College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518118, China.
J Imaging Inform Med. 2025 Jun;38(3):1467-1483. doi: 10.1007/s10278-024-01280-x. Epub 2024 Oct 4.
Predicting long-term clinical outcomes based on the early DSC PWI MRI scan is valuable for prognostication, resource management, clinical trials, and patient expectations. Current methods require subjective decisions about which imaging features to assess and may require time-consuming postprocessing. This study's goal was to predict multilabel 90-day modified Rankin Scale (mRS) score in acute ischemic stroke patients by combining ensemble models and different configurations of radiomic features generated from Dynamic susceptibility contrast perfusion-weighted imaging. In Follow-up studies, a total of 70 acute ischemic stroke (AIS) patients underwent magnetic resonance imaging within 24 hours poststroke and had a follow-up scan. In the single study, 150 DSC PWI Image scans for AIS patients. The DRF are extracted from DSC-PWI Scans. Then Lasso algorithm is applied for feature selection, then new features are generated from initial and follow-up scans. Then we applied different ensemble models to classify between three classes normal outcome (0, 1 mRS score), moderate outcome (2,3,4 mRS score), and severe outcome (5,6 mRS score). ANOVA and post-hoc Tukey HSD tests confirmed significant differences in model style performance across various studies and classification techniques. Stacking models consistently on average outperformed others, achieving an Accuracy of 0.68 ± 0.15, Precision of 0.68 ± 0.17, Recall of 0.65 ± 0.14, and F1 score of 0.63 ± 0.15 in the follow-up time study. Techniques like Bo_Smote showed significantly higher recall and F1 scores, highlighting their robustness and effectiveness in handling imbalanced data. Ensemble models, particularly Bagging and Stacking, demonstrated superior performance, achieving nearly 0.93 in Accuracy, 0.95 in Precision, 0.94 in Recall, and 0.94 in F1 metrics in follow-up conditions, significantly outperforming single models. Ensemble models based on radiomics generated from combining Initial and follow-up scans can be used to predict multilabel 90-day stroke outcomes with reduced subjectivity and user burden.
基于早期动态对比增强灌注加权成像(DSC PWI)磁共振成像(MRI)扫描预测长期临床结果,对于预后评估、资源管理、临床试验及患者期望具有重要价值。当前方法需要对评估哪些影像特征做出主观决策,且可能需要耗时的后处理。本研究的目标是通过结合集成模型和从动态磁敏感对比灌注加权成像生成的不同配置的放射组学特征,预测急性缺血性中风患者的多标签90天改良Rankin量表(mRS)评分。在随访研究中,共有70例急性缺血性中风(AIS)患者在中风后24小时内接受了磁共振成像检查,并进行了随访扫描。在单项研究中,对AIS患者进行了150次DSC PWI图像扫描。从DSC-PWI扫描中提取诊断相关特征(DRF)。然后应用套索算法进行特征选择,接着从初始扫描和随访扫描中生成新特征。然后我们应用不同的集成模型对正常结局(0、1 mRS评分)、中度结局(2、3、4 mRS评分)和重度结局(5、6 mRS评分)这三个类别进行分类。方差分析和事后Tukey HSD检验证实,在各种研究和分类技术中,模型风格性能存在显著差异。在随访时间研究中,堆叠模型平均始终优于其他模型,准确率达到0.68±0.15,精确率为0.68±0.17,召回率为0.65±0.14,F1分数为0.63±0.15。像Bo_Smote这样的技术显示出显著更高的召回率和F1分数,突出了它们在处理不平衡数据方面的稳健性和有效性。集成模型,特别是Bagging和Stacking,表现出卓越性能,在随访条件下,准确率接近0.93,精确率为0.95,召回率为0.94,F1指标为0.94,显著优于单一模型。基于结合初始扫描和随访扫描生成的放射组学的集成模型,可用于预测多标签90天中风结局,降低主观性和用户负担。