Masaryk University, Central European Institute of Technology, Kamenice 753/5, 625 00, Brno, Czech Republic.
Faculty of Medicine, Department of Biology, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic.
J Cancer Res Clin Oncol. 2023 Aug;149(10):7587-7600. doi: 10.1007/s00432-023-04700-7. Epub 2023 Mar 29.
Renal cell carcinoma belongs among the deadliest malignancies despite great progress in therapy and accessibility of primary care. One of the main unmet medical needs remains the possibility of early diagnosis before the tumor dissemination and prediction of early relapse and disease progression after a successful nephrectomy. In our study, we aimed to identify novel diagnostic and prognostic biomarkers using next-generation sequencing on a novel cohort of RCC patients.
Global expression profiles have been obtained using next-generation sequencing of paired tumor and non-tumor tissue of 48 RCC patients. Twenty candidate lncRNA have been selected for further validation on an independent cohort of paired tumor and non-tumor tissue of 198 RCC patients.
Sequencing data analysis showed significant dysregulation of more than 2800 lncRNAs. Out of 20 candidate lncRNAs selected for validation, we confirmed that 14 of them are statistically significantly dysregulated. In order to yield better discriminatory results, we combined several best performing lncRNAs into diagnostic and prognostic models. A diagnostic model consisting of AZGP1P1, CDKN2B-AS1, COL18A1, and RMST achieved AUC 0.9808, sensitivity 95.96%, and specificity 90.4%. The model for prediction of early relapse after nephrectomy consists of COLCA1, RMST, SNHG3, and ZNF667-AS1 and achieved AUC 0.9241 with sensitivity 93.75% and specificity 71.07%. Notably, no combination has outperformed COLCA1 alone. Lastly, a model for stage consists of ZNF667-AS1, PVT1, RMST, LINC00955, and TCL6 and achieves AUC 0.812, sensitivity 85.71%, and specificity 69.41%.
In our work, we identified several lncRNAs as potential biomarkers and developed models for diagnosis and prognostication in relation to stage and early relapse after nephrectomy.
尽管在治疗和初级保健方面取得了巨大进展,但肾细胞癌仍然是最致命的恶性肿瘤之一。未满足的主要医疗需求之一仍然是在肿瘤扩散之前进行早期诊断的可能性,以及在成功肾切除术后预测早期复发和疾病进展的可能性。在我们的研究中,我们旨在使用新一代测序技术在一组新的肾细胞癌患者中确定新的诊断和预后生物标志物。
使用 48 例肾细胞癌患者的肿瘤和非肿瘤组织的下一代测序获得了全局表达谱。在 198 例肾细胞癌患者的肿瘤和非肿瘤组织的独立队列中,选择了 20 个候选 lncRNA 进行进一步验证。
测序数据分析显示,超过 2800 个 lncRNA 存在显著失调。在 20 个候选 lncRNA 中,有 14 个经过验证后被证实存在统计学上的显著失调。为了获得更好的区分结果,我们将几个表现最好的 lncRNA 组合成诊断和预后模型。由 AZGP1P1、CDKN2B-AS1、COL18A1 和 RMST 组成的诊断模型的 AUC 为 0.9808,灵敏度为 95.96%,特异性为 90.4%。用于预测肾切除术后早期复发的模型由 COLCA1、RMST、SNHG3 和 ZNF667-AS1 组成,AUC 为 0.9241,灵敏度为 93.75%,特异性为 71.07%。值得注意的是,没有任何组合的表现优于 COLCA1 单独使用。最后,一个用于分期的模型由 ZNF667-AS1、PVT1、RMST、LINC00955 和 TCL6 组成,AUC 为 0.812,灵敏度为 85.71%,特异性为 69.41%。
在我们的工作中,我们确定了一些 lncRNA 作为潜在的生物标志物,并开发了与分期和肾切除术后早期复发相关的诊断和预后模型。