Suppr超能文献

HAC-Net:一种基于混合注意力的卷积神经网络,用于高精度蛋白质-配体结合亲和力预测。

HAC-Net: A Hybrid Attention-Based Convolutional Neural Network for Highly Accurate Protein-Ligand Binding Affinity Prediction.

作者信息

Kyro Gregory W, Brent Rafael I, Batista Victor S

机构信息

Department of Chemistry, Yale University, New Haven, Connecticut 06511-8499 United States.

出版信息

J Chem Inf Model. 2023 Apr 10;63(7):1947-1960. doi: 10.1021/acs.jcim.3c00251. Epub 2023 Mar 29.

Abstract

Applying deep learning concepts from image detection and graph theory has greatly advanced protein-ligand binding affinity prediction, a challenge with enormous ramifications for both drug discovery and protein engineering. We build upon these advances by designing a novel deep learning architecture consisting of a 3-dimensional convolutional neural network utilizing channel-wise attention and two graph convolutional networks utilizing attention-based aggregation of node features. HAC-Net (Hybrid Attention-Based Convolutional Neural Network) obtains state-of-the-art results on the PDBbind v.2016 core set, the most widely recognized benchmark in the field. We extensively assess the generalizability of our model using multiple train-test splits, each of which maximizes differences between either protein structures, protein sequences, or ligand extended-connectivity fingerprints of complexes in the training and test sets. Furthermore, we perform 10-fold cross-validation with a similarity cutoff between SMILES strings of ligands in the training and test sets and also evaluate the performance of HAC-Net on lower-quality data. We envision that this model can be extended to a broad range of supervised learning problems related to structure-based biomolecular property prediction. All of our software is available as an open-source repository at https://github.com/gregory-kyro/HAC-Net/, and the HACNet Python package is available through PyPI.

摘要

将图像检测和图论中的深度学习概念应用于蛋白质-配体结合亲和力预测,极大地推动了这一领域的发展。蛋白质-配体结合亲和力预测是一个对药物发现和蛋白质工程都具有重大影响的挑战。我们在此基础上进行创新,设计了一种新颖的深度学习架构,它由一个利用通道注意力机制的三维卷积神经网络和两个利用基于注意力的节点特征聚合的图卷积神经网络组成。HAC-Net(基于混合注意力的卷积神经网络)在PDBbind v.2016核心数据集上取得了领先成果,该数据集是该领域最广泛认可的基准。我们使用多种训练-测试分割方法广泛评估了模型的泛化能力,每种分割方法都最大化了训练集和测试集中蛋白质结构、蛋白质序列或复合物配体扩展连接指纹之间的差异。此外,我们在训练集和测试集的配体SMILES字符串之间设置相似性截止值进行了10折交叉验证,并评估了HAC-Net在低质量数据上的性能。我们设想该模型可以扩展到与基于结构的生物分子性质预测相关的广泛监督学习问题。我们所有的软件都可在https://github.com/gregory-kyro/HAC-Net/上作为开源存储库获取,并且HACNet Python包可通过PyPI获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验