Suppr超能文献

: 脑电数据的无监督分类。

: Unsupervised Classification of Electroencephalographic Data.

机构信息

Department of Medical Biochemistry and Microbiology, Uppsala University, 75237 Uppsala, Sweden.

Department of Cell and Molecular Biology, Uppsala University, 75237 Uppsala, Sweden.

出版信息

Sensors (Basel). 2023 Mar 9;23(6):2971. doi: 10.3390/s23062971.

Abstract

Electroencephalogram (EEG) interpretation plays a critical role in the clinical assessment of neurological conditions, most notably epilepsy. However, EEG recordings are typically analyzed manually by highly specialized and heavily trained personnel. Moreover, the low rate of capturing abnormal events during the procedure makes interpretation time-consuming, resource-hungry, and overall an expensive process. Automatic detection offers the potential to improve the quality of patient care by shortening the time to diagnosis, managing big data and optimizing the allocation of human resources towards precision medicine. Here, we present , a novel unsupervised machine-learning method comprised of the interplay between an autoencoder network, a hidden Markov model (HMM), and a generative component: after dividing the signal into overlapping frames and performing a fast Fourier transform, trains an autoencoder neural network for dimensionality reduction and compact representation of different frequency patterns for each frame. Next, we processed the temporal patterns using a HMM, while a third and generative component hypothesized and characterized the different phases that were then fed back to the HMM. then automatically generates labels that the physician can interpret as pathological and non-pathological phases, thus effectively reducing the search space for trained personnel. We evaluated 's predictive performance on 686 recordings, encompassing more than 980 h from the publicly available Physionet database. Compared to manual annotations, identified 197 of 198 epileptic events (99.45%), and is, as such, a highly sensitive method, which is a prerequisite for clinical use.

摘要

脑电图(EEG)解释在神经状况的临床评估中起着至关重要的作用,特别是在癫痫方面。然而,脑电图记录通常由高度专业化和训练有素的人员手动分析。此外,在该过程中捕捉异常事件的概率较低使得解释既耗时又耗资源,而且整体上是一个昂贵的过程。自动检测具有通过缩短诊断时间、管理大数据和优化人力资源分配以实现精准医疗来提高患者护理质量的潜力。在这里,我们提出了一种新颖的无监督机器学习方法,该方法由自编码器网络、隐马尔可夫模型(HMM)和生成组件的相互作用组成:在将信号分成重叠帧并执行快速傅里叶变换之后,对自编码器神经网络进行训练,用于对每个帧的不同频率模式进行降维和紧凑表示。接下来,我们使用 HMM 处理时间模式,而第三个生成组件假设并描述不同的阶段,然后将这些阶段反馈给 HMM。然后自动生成标签,医生可以将这些标签解释为病理和非病理阶段,从而有效地减少了训练人员的搜索空间。我们在 686 个记录上评估了‘的预测性能,这些记录包含来自公开的 Physionet 数据库的超过 980 小时的数据。与手动注释相比,该方法识别了 198 个癫痫事件中的 197 个(99.45%),因此是一种高度敏感的方法,这是临床应用的前提。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验