Suppr超能文献

基于级联卷积神经网络和专家特征的 12 导联心电图心律失常分类

12-Lead ECG arrhythmia classification using cascaded convolutional neural network and expert feature.

机构信息

School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, China.

School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, China; Beijing Information Science and Technology University, Beijing, China.

出版信息

J Electrocardiol. 2021 Jul-Aug;67:56-62. doi: 10.1016/j.jelectrocard.2021.04.016. Epub 2021 May 26.

Abstract

Owing to widely available digital ECG data and recent advances in deep learning techniques, automatic ECG arrhythmia classification based on deep neural network has gained growing attention. However, existing neural networks are mainly validated on single‑lead ECG, not involving the correlation and difference between multiple leads, while multiple leads ECG provides more complete description of the cardiac activity in different directions. This paper proposes a 12‑lead ECG arrhythmia classification method using a cascaded convolutional neural network (CCNN) and expert features. The one-dimensional (1-D) CNN is firstly designed to extract features from each single‑lead signal. Subsequently, considering the temporal correlation and spatial variability between multiple leads, features are cascaded as input to two-dimensional (2-D) densely connected ResNet blocks to classify the arrhythmia. Furthermore, features based on expert knowledge are extracted and a random forest is applied to get a classification probability. Results from both CCNN and expert features are combined using the stacking technique as the final classification result. The method has been validated against the first China ECG Intelligence Challenge, obtaining a final score of 86.5% for classifying 12‑lead ECG data with multiple labels into 9 categories.

摘要

由于广泛可用的数字心电图数据和深度学习技术的最新进展,基于深度神经网络的自动心电图心律失常分类引起了越来越多的关注。然而,现有的神经网络主要在单导联心电图上进行验证,不涉及多个导联之间的相关性和差异,而多导联心电图提供了对心脏活动在不同方向上的更完整描述。本文提出了一种使用级联卷积神经网络(CCNN)和专家特征的 12 导联心电图心律失常分类方法。首先设计一维(1-D)CNN 从每个单导联信号中提取特征。随后,考虑到多个导联之间的时间相关性和空间可变性,将特征级联作为输入到二维(2-D)密集连接 ResNet 块中,以对心律失常进行分类。此外,提取基于专家知识的特征,并应用随机森林获得分类概率。使用堆叠技术将 CCNN 和专家特征的结果组合起来作为最终的分类结果。该方法已经针对第一届中国心电图智能挑战赛进行了验证,在将具有多个标签的 12 导联心电图数据分类为 9 个类别时,最终得分为 86.5%。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验