Department of Engineering for Innovation Medicine, University of Verona, 37134 Verona, Italy.
Department of Neuroscience "Rita Levi Montalcini", University of Turin, 10124 Turin, Italy.
Sensors (Basel). 2023 Mar 16;23(6):3193. doi: 10.3390/s23063193.
Axial postural abnormalities (aPA) are common features of Parkinson's disease (PD) and manifest in over 20% of patients during the course of the disease. aPA form a spectrum of functional trunk misalignment, ranging from a typical Parkinsonian stooped posture to progressively greater degrees of spine deviation. Current research has not yet led to a sufficient understanding of pathophysiology and management of aPA in PD, partially due to lack of agreement on validated, user-friendly, automatic tools for measuring and analysing the differences in the degree of aPA, according to patients' therapeutic conditions and tasks. In this context, human pose estimation (HPE) software based on deep learning could be a valid support as it automatically extrapolates spatial coordinates of the human skeleton keypoints from images or videos. Nevertheless, standard HPE platforms have two limitations that prevent their adoption in such a clinical practice. First, standard HPE keypoints are inconsistent with the keypoints needed to assess aPA (degrees and fulcrum). Second, aPA assessment either requires advanced RGB-D sensors or, when based on the processing of RGB images, they are most likely sensitive to the adopted camera and to the scene (e.g., sensor-subject distance, lighting, background-subject clothing contrast). This article presents a software that augments the human skeleton extrapolated by state-of-the-art HPE software from RGB pictures with exact bone points for posture evaluation through computer vision post-processing primitives. This article shows the software robustness and accuracy on the processing of 76 RGB images with different resolutions and sensor-subject distances from 55 PD patients with different degrees of anterior and lateral trunk flexion.
轴向姿势异常(aPA)是帕金森病(PD)的常见特征,在疾病过程中超过 20%的患者会出现这种情况。aPA 形成了功能性躯干失准的谱系,从典型的帕金森氏弯腰姿势到逐渐增加的脊柱偏斜程度不等。目前的研究尚未充分了解 PD 中 aPA 的病理生理学和管理,部分原因是缺乏对经过验证的、用户友好的、自动工具的共识,这些工具用于测量和分析根据患者治疗条件和任务的 aPA 程度差异。在这种情况下,基于深度学习的人体姿势估计(HPE)软件可能是一个有效的支持,因为它可以自动从图像或视频中推断出人体骨骼关键点的空间坐标。然而,标准的 HPE 平台有两个限制,阻止了它们在这种临床实践中的采用。首先,标准的 HPE 关键点与评估 aPA 所需的关键点(角度和支点)不一致。其次,aPA 评估要么需要先进的 RGB-D 传感器,要么当基于 RGB 图像的处理时,它们很可能对所采用的相机和场景(例如,传感器-主体距离、照明、背景-主体服装对比度)敏感。本文介绍了一种软件,该软件通过计算机视觉后处理原语,从 RGB 图片中增强了最先进的 HPE 软件所推断出的人体骨骼,并增加了用于姿势评估的确切骨骼点。本文展示了该软件在处理来自 55 名 PD 患者的 76 张不同分辨率和传感器-主体距离的 RGB 图像时的鲁棒性和准确性,这些患者的前侧和侧方躯干弯曲程度不同。