Coullomb Alexis, Monsarrat Paul, Pancaldi Vera
CRCT, Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France.
RESTORE Research Center, Université de Toulouse, INSERM 1301, CNRS 5070, EFS, ENVT, Toulouse, France.
bioRxiv. 2024 Sep 23:2023.03.16.532947. doi: 10.1101/2023.03.16.532947.
Spatially resolved omics enable the discovery of tissue organization of biological or clinical importance. Despite the existence of several methods, performing a rational analysis including multiple algorithms while integrating different conditions such as clinical data is still not trivial. To make such investigations more accessible, we developed , a Python package to analyze spatial omics data with respect to clinical or biological data and to gain insight on cell interaction patterns or tissue architecture of biological relevance. is compatible with all spatial omics methods, it leverages to build accurate spatial networks, and is compatible with Squidpy. It proposes an analysis pipeline, in which increasingly complex features computed at each step can be explored in integration with clinical data, either with easy-to-use descriptive statistics and data visualization, or by seamlessly training machine learning models and identifying variables with the most predictive power. can take as input any dataset produced by spatial omics methods, including sub-cellular resolved transcriptomics (MERFISH, seqFISH) and proteomics (CODEX, MIBI-TOF, low-plex immuno-fluorescence), as well as spot-based spatial transcriptomics (10x Visium). Integration with experimental metadata or clinical data is adapted to binary conditions, such as biological treatments or response status of patients, and to survival data. We demonstrate the proposed analysis pipeline on two spatially resolved proteomic datasets containing either binary response to immunotherapy or survival data. mosna identifies features describing cellular composition and spatial distribution that can provide biological insight regarding factors that affect response to immunotherapies or survival.
空间分辨组学能够发现具有生物学或临床重要性的组织结构。尽管存在多种方法,但在整合不同条件(如临床数据)的同时进行包括多种算法的合理分析仍然并非易事。为了使此类研究更易于进行,我们开发了mosna,这是一个Python软件包,用于分析空间组学数据与临床或生物学数据的关系,并深入了解具有生物学相关性的细胞相互作用模式或组织结构。mosna与所有空间组学方法兼容,它利用igraph构建准确的空间网络,并且与Squidpy兼容。它提出了一个分析流程,在这个流程中,可以通过易于使用的描述性统计和数据可视化,或者通过无缝训练机器学习模型并识别具有最强预测能力的变量,将在每个步骤计算出的日益复杂的特征与临床数据相结合进行探索。mosna可以将空间组学方法产生的任何数据集作为输入,包括亚细胞分辨率转录组学(MERFISH、seqFISH)和蛋白质组学(CODEX、MIBI-TOF、低通量免疫荧光),以及基于斑点的空间转录组学(10x Visium)。与实验元数据或临床数据的整合适用于二元条件,如生物治疗或患者的反应状态,以及生存数据。我们在两个空间分辨蛋白质组学数据集上展示了所提出的分析流程,这些数据集包含对免疫疗法的二元反应或生存数据。mosna识别出描述细胞组成和空间分布的特征,这些特征可以提供有关影响免疫疗法反应或生存的因素的生物学见解。