Suppr超能文献

SCAN-IT:基于图神经网络的空间转录组学图像区域分割

SCAN-IT: Domain segmentation of spatial transcriptomics images by graph neural network.

作者信息

Cang Zixuan, Ning Xinyi, Nie Annika, Xu Min, Zhang Jing

机构信息

Department of Mathematics University of California, Irvine Irvine, CA, United States.

Tsinghua University Beijing, China.

出版信息

BMVC. 2021 Nov;32.

Abstract

Complex biological tissues consist of numerous cells in a highly coordinated manner and carry out various biological functions. Therefore, segmenting a tissue into spatial and functional domains is critically important for understanding and controlling the biological functions. The emerging spatial transcriptomics technologies allow simultaneous measurements of thousands of genes with precise spatial information, providing an unprecedented opportunity for dissecting biological tissues. However, how to utilize such noisy, sparse, and high dimensional data for tissue segmentation remains a major challenge. Here, we develop a deep learning-based method, named SCAN-IT by transforming the spatial domain identification problem into an image segmentation problem, with cells mimicking pixels and expression values of genes within a cell representing the color channels. Specifically, SCAN-IT relies on geometric modeling, graph neural networks, and an informatics approach, DeepGraphInfomax. We demonstrate that SCAN-IT can handle datasets from a wide range of spatial transcriptomics techniques, including the ones with high spatial resolution but low gene coverage as well as those with low spatial resolution but high gene coverage. We show that SCAN-IT outperforms state-of-the-art methods using a benchmark dataset with ground truth domain annotations.

摘要

复杂的生物组织由大量细胞以高度协调的方式组成,并执行各种生物学功能。因此,将组织分割成空间和功能域对于理解和控制生物学功能至关重要。新兴的空间转录组学技术允许同时测量数千个具有精确空间信息的基因,为剖析生物组织提供了前所未有的机会。然而,如何利用这种噪声大、稀疏且高维的数据进行组织分割仍然是一个重大挑战。在这里,我们开发了一种基于深度学习的方法,名为SCAN-IT,通过将空间域识别问题转化为图像分割问题,其中细胞模仿像素,细胞内基因的表达值代表颜色通道。具体而言,SCAN-IT依赖于几何建模、图神经网络和一种信息学方法,即深度图信息最大化。我们证明,SCAN-IT可以处理来自广泛空间转录组学技术的数据集,包括那些具有高空间分辨率但低基因覆盖率的数据集以及那些具有低空间分辨率但高基因覆盖率的数据集。我们表明,使用具有真实域注释的基准数据集,SCAN-IT优于现有方法。

相似文献

2
Graph deep learning enabled spatial domains identification for spatial transcriptomics.
Brief Bioinform. 2023 May 19;24(3). doi: 10.1093/bib/bbad146.
3
Integrating multi-modal information to detect spatial domains of spatial transcriptomics by graph attention network.
J Genet Genomics. 2023 Sep;50(9):720-733. doi: 10.1016/j.jgg.2023.06.005. Epub 2023 Jun 23.
5
Cell clustering for spatial transcriptomics data with graph neural networks.
Nat Comput Sci. 2022 Jun;2(6):399-408. doi: 10.1038/s43588-022-00266-5. Epub 2022 Jun 27.
6
SiGra: single-cell spatial elucidation through an image-augmented graph transformer.
Nat Commun. 2023 Sep 12;14(1):5618. doi: 10.1038/s41467-023-41437-w.
7
joint cell segmentation and annotation for spatial transcriptomics with transferred graph embeddings.
bioRxiv. 2023 Sep 22:2023.09.19.558548. doi: 10.1101/2023.09.19.558548.
8
Dissecting Spatiotemporal Structures in Spatial Transcriptomics via Diffusion-Based Adversarial Learning.
Research (Wash D C). 2024 May 29;7:0390. doi: 10.34133/research.0390. eCollection 2024.
9
Unsupervised domain adaptation method for segmenting cross-sectional CCA images.
Comput Methods Programs Biomed. 2022 Oct;225:107037. doi: 10.1016/j.cmpb.2022.107037. Epub 2022 Jul 22.

引用本文的文献

1
A Meta-Review of Spatial Transcriptomics Analysis Software.
Cells. 2025 Jul 10;14(14):1060. doi: 10.3390/cells14141060.
2
Cancer therapy resistance from a spatial-omics perspective.
Clin Transl Med. 2025 Jul;15(7):e70396. doi: 10.1002/ctm2.70396.
3
SOAPy: a Python package to dissect spatial architecture, dynamics, and communication.
Genome Biol. 2025 Mar 29;26(1):80. doi: 10.1186/s13059-025-03550-5.
4
Graph neural networks for single-cell omics data: a review of approaches and applications.
Brief Bioinform. 2025 Mar 4;26(2). doi: 10.1093/bib/bbaf109.
5
stDyer enables spatial domain clustering with dynamic graph embedding.
Genome Biol. 2025 Feb 20;26(1):34. doi: 10.1186/s13059-025-03503-y.
6
Multiscale Cell-Cell Interactive Spatial Transcriptomics Analysis.
Res Sq. 2025 Jan 3:rs.3.rs-5743704. doi: 10.21203/rs.3.rs-5743704/v1.
7
PCA-based spatial domain identification with state-of-the-art performance.
Bioinformatics. 2024 Dec 26;41(1). doi: 10.1093/bioinformatics/btaf005.
9
Spatially Informed Graph Structure Learning Extracts Insights from Spatial Transcriptomics.
Adv Sci (Weinh). 2024 Dec;11(45):e2403572. doi: 10.1002/advs.202403572. Epub 2024 Oct 9.
10
Next-generation spatial transcriptomics: unleashing the power to gear up translational oncology.
MedComm (2020). 2024 Oct 6;5(10):e765. doi: 10.1002/mco2.765. eCollection 2024 Oct.

本文引用的文献

1
SOMDE: a scalable method for identifying spatially variable genes with self-organizing map.
Bioinformatics. 2021 Dec 7;37(23):4392-4398. doi: 10.1093/bioinformatics/btab471.
2
Spatial transcriptomics at subspot resolution with BayesSpace.
Nat Biotechnol. 2021 Nov;39(11):1375-1384. doi: 10.1038/s41587-021-00935-2. Epub 2021 Jun 3.
3
Giotto: a toolbox for integrative analysis and visualization of spatial expression data.
Genome Biol. 2021 Mar 8;22(1):78. doi: 10.1186/s13059-021-02286-2.
4
Image Segmentation Using Deep Learning: A Survey.
IEEE Trans Pattern Anal Mach Intell. 2022 Jul;44(7):3523-3542. doi: 10.1109/TPAMI.2021.3059968. Epub 2022 Jun 3.
5
Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex.
Nat Neurosci. 2021 Mar;24(3):425-436. doi: 10.1038/s41593-020-00787-0. Epub 2021 Feb 8.
6
Building segmentation through a gated graph convolutional neural network with deep structured feature embedding.
ISPRS J Photogramm Remote Sens. 2020 Jan;159:184-197. doi: 10.1016/j.isprsjprs.2019.11.004.
7
Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution.
Science. 2019 Mar 29;363(6434):1463-1467. doi: 10.1126/science.aaw1219. Epub 2019 Mar 28.
8
Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH.
Nature. 2019 Apr;568(7751):235-239. doi: 10.1038/s41586-019-1049-y. Epub 2019 Mar 25.
9
Spatial organization of the somatosensory cortex revealed by osmFISH.
Nat Methods. 2018 Nov;15(11):932-935. doi: 10.1038/s41592-018-0175-z. Epub 2018 Oct 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验