Cang Zixuan, Ning Xinyi, Nie Annika, Xu Min, Zhang Jing
Department of Mathematics University of California, Irvine Irvine, CA, United States.
Tsinghua University Beijing, China.
BMVC. 2021 Nov;32.
Complex biological tissues consist of numerous cells in a highly coordinated manner and carry out various biological functions. Therefore, segmenting a tissue into spatial and functional domains is critically important for understanding and controlling the biological functions. The emerging spatial transcriptomics technologies allow simultaneous measurements of thousands of genes with precise spatial information, providing an unprecedented opportunity for dissecting biological tissues. However, how to utilize such noisy, sparse, and high dimensional data for tissue segmentation remains a major challenge. Here, we develop a deep learning-based method, named SCAN-IT by transforming the spatial domain identification problem into an image segmentation problem, with cells mimicking pixels and expression values of genes within a cell representing the color channels. Specifically, SCAN-IT relies on geometric modeling, graph neural networks, and an informatics approach, DeepGraphInfomax. We demonstrate that SCAN-IT can handle datasets from a wide range of spatial transcriptomics techniques, including the ones with high spatial resolution but low gene coverage as well as those with low spatial resolution but high gene coverage. We show that SCAN-IT outperforms state-of-the-art methods using a benchmark dataset with ground truth domain annotations.
复杂的生物组织由大量细胞以高度协调的方式组成,并执行各种生物学功能。因此,将组织分割成空间和功能域对于理解和控制生物学功能至关重要。新兴的空间转录组学技术允许同时测量数千个具有精确空间信息的基因,为剖析生物组织提供了前所未有的机会。然而,如何利用这种噪声大、稀疏且高维的数据进行组织分割仍然是一个重大挑战。在这里,我们开发了一种基于深度学习的方法,名为SCAN-IT,通过将空间域识别问题转化为图像分割问题,其中细胞模仿像素,细胞内基因的表达值代表颜色通道。具体而言,SCAN-IT依赖于几何建模、图神经网络和一种信息学方法,即深度图信息最大化。我们证明,SCAN-IT可以处理来自广泛空间转录组学技术的数据集,包括那些具有高空间分辨率但低基因覆盖率的数据集以及那些具有低空间分辨率但高基因覆盖率的数据集。我们表明,使用具有真实域注释的基准数据集,SCAN-IT优于现有方法。