Department of Robotics and Mechatronics Engineering, DGIST, 333, Techno jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988, Republic of Korea.
Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
Adv Sci (Weinh). 2023 May;10(15):e2206186. doi: 10.1002/advs.202206186. Epub 2023 Mar 30.
Fiber-based implantable electronics are one of promising candidates for in vivo biomedical applications thanks to their unique structural advantages. However, development of fiber-based implantable electronic devices with biodegradable capability remains a challenge due to the lack of biodegradable fiber electrodes with high electrical and mechanical properties. Here, a biocompatible and biodegradable fiber electrode which simultaneously exhibits high electrical conductivity and mechanical robustness is presented. The fiber electrode is fabricated through a facile approach that incorporates a large amount of Mo microparticles into outermost volume of a biodegradable polycaprolactone (PCL) fiber scaffold in a concentrated manner. The biodegradable fiber electrode simultaneously exhibits a remarkable electrical performance (≈43.5 Ω cm ), mechanical robustness, bending stability, and durability for more than 4000 bending cycles based on the Mo/PCL conductive layer and intact PCL core in the fiber electrode. The electrical behavior of the biodegradable fiber electrode under the bending deformation is analyzed by an analytical prediction and a numerical simulation. In addition, the biocompatible properties and degradation behavior of the fiber electrode are systematically investigated. The potential of biodegradable fiber electrode is demonstrated in various applications such as an interconnect, a suturable temperature sensor, and an in vivo electrical stimulator.
基于纤维的植入式电子产品由于其独特的结构优势,是体内生物医学应用的有前途的候选者之一。然而,由于缺乏具有高导电性和机械性能的可生物降解纤维电极,开发具有可生物降解能力的纤维植入式电子设备仍然是一个挑战。在这里,提出了一种同时具有高导电性和机械鲁棒性的生物相容性和可生物降解的纤维电极。该纤维电极是通过一种简便的方法制备的,该方法将大量的 Mo 微颗粒集中地掺入可生物降解的聚己内酯(PCL)纤维支架的最外层体积中。基于 Mo/PCL 导电层和纤维电极中完整的 PCL 芯,可生物降解的纤维电极同时具有出色的电性能(≈43.5 Ω cm)、机械鲁棒性、弯曲稳定性和耐用性,可超过 4000 次弯曲循环。通过分析预测和数值模拟分析了可生物降解纤维电极在弯曲变形下的电行为。此外,系统研究了纤维电极的生物相容性和降解行为。可生物降解纤维电极在各种应用中表现出了潜力,例如互连、可缝合温度传感器和体内电刺激器。