Suppr超能文献

基于张量的系统免疫与传染病洞察

Tensor-based insights into systems immunity and infectious disease.

机构信息

Department of Bioengineering, University of California Los Angeles (UCLA), Los Angeles, CA 90024, USA.

The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical Center, Torrance, CA 90502, USA; Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA; Division of Infectious Diseases, Department of Medicine, Harbor-UCLA Medical Center, Torrance, CA 90502, USA; Division of Molecular Medicine, Department of Medicine, Harbor-UCLA Medical Center, Torrance, CA 90502, USA.

出版信息

Trends Immunol. 2023 May;44(5):329-332. doi: 10.1016/j.it.2023.03.003. Epub 2023 Mar 29.

Abstract

Profiling immune responses across several dimensions, including time, patients, molecular features, and tissue sites, can deepen our understanding of immunity as an integrated system. These studies require new analytical approaches to realize their full potential. We highlight recent applications of tensor methods and discuss several future opportunities.

摘要

对免疫反应进行多维度分析,包括时间、患者、分子特征和组织部位,可以加深我们对免疫系统作为一个整体系统的理解。这些研究需要新的分析方法来充分发挥其潜力。我们重点介绍了张量方法的最新应用,并讨论了几个未来的机会。

相似文献

1
Tensor-based insights into systems immunity and infectious disease.基于张量的系统免疫与传染病洞察
Trends Immunol. 2023 May;44(5):329-332. doi: 10.1016/j.it.2023.03.003. Epub 2023 Mar 29.
4
Tensor Networks for Latent Variable Analysis: Higher Order Canonical Polyadic Decomposition.用于潜在变量分析的张量网络:高阶典范多adic分解
IEEE Trans Neural Netw Learn Syst. 2020 Jun;31(6):2174-2188. doi: 10.1109/TNNLS.2019.2929063. Epub 2019 Aug 26.
5
Supervised Learning for Nonsequential Data: A Canonical Polyadic Decomposition Approach.非序列数据的监督学习:一种典型多向分解方法。
IEEE Trans Neural Netw Learn Syst. 2022 Oct;33(10):5162-5176. doi: 10.1109/TNNLS.2021.3069399. Epub 2022 Oct 5.
6
Efficient Construction of Canonical Polyadic Approximations of Tensor Networks.张量网络规范多adic近似的高效构建
J Chem Theory Comput. 2023 Jan 10;19(1):71-81. doi: 10.1021/acs.jctc.2c00861. Epub 2022 Dec 9.

引用本文的文献

本文引用的文献

7
Leveraging Computational Modeling to Understand Infectious Diseases.利用计算模型理解传染病。
Curr Pathobiol Rep. 2020;8(4):149-161. doi: 10.1007/s40139-020-00213-x. Epub 2020 Sep 24.
9
Simulation modelling for immunologists.免疫学家的模拟建模。
Nat Rev Immunol. 2020 Mar;20(3):186-195. doi: 10.1038/s41577-019-0235-3. Epub 2019 Dec 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验