Suppr超能文献

一种用于多主体脑激活模式快速贝叶斯估计的规范多adic张量基。

A canonical polyadic tensor basis for fast Bayesian estimation of multi-subject brain activation patterns.

作者信息

Miranda Michelle F

机构信息

Department of Mathematics and Statistics, University of Victoria, Victoria, BC, Canada.

出版信息

Front Neuroinform. 2024 Aug 12;18:1399391. doi: 10.3389/fninf.2024.1399391. eCollection 2024.

Abstract

Task-evoked functional magnetic resonance imaging studies, such as the Human Connectome Project (HCP), are a powerful tool for exploring how brain activity is influenced by cognitive tasks like memory retention, decision-making, and language processing. A fast Bayesian function-on-scalar model is proposed for estimating population-level activation maps linked to the working memory task. The model is based on the canonical polyadic (CP) tensor decomposition of coefficient maps obtained for each subject. This decomposition effectively yields a tensor basis capable of extracting both common features and subject-specific features from the coefficient maps. These subject-specific features, in turn, are modeled as a function of covariates of interest using a Bayesian model that accounts for the correlation of the CP-extracted features. The dimensionality reduction achieved with the tensor basis allows for a fast MCMC estimation of population-level activation maps. This model is applied to one hundred unrelated subjects from the HCP dataset, yielding significant insights into brain signatures associated with working memory.

摘要

任务诱发功能磁共振成像研究,如人类连接组计划(HCP),是探索大脑活动如何受到诸如记忆保持、决策和语言处理等认知任务影响的有力工具。提出了一种快速贝叶斯标量函数模型,用于估计与工作记忆任务相关的群体水平激活图。该模型基于为每个受试者获得的系数图的规范多adic(CP)张量分解。这种分解有效地产生了一个张量基,能够从系数图中提取共同特征和特定于受试者的特征。反过来,这些特定于受试者的特征使用一个考虑了CP提取特征相关性的贝叶斯模型,被建模为感兴趣协变量的函数。通过张量基实现的降维允许对群体水平激活图进行快速MCMC估计。该模型应用于HCP数据集中的100名无关受试者,从而对与工作记忆相关的大脑特征有了重要的认识。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb75/11345152/8e37c8eb47ad/fninf-18-1399391-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验