Suppr超能文献

人类视觉解释可减轻基于人工智能的外科医生技能评估中的偏差。

Human visual explanations mitigate bias in AI-based assessment of surgeon skills.

作者信息

Kiyasseh Dani, Laca Jasper, Haque Taseen F, Otiato Maxwell, Miles Brian J, Wagner Christian, Donoho Daniel A, Trinh Quoc-Dien, Anandkumar Animashree, Hung Andrew J

机构信息

Department of Computing and Mathematical Sciences, California Institute of Technology, California, CA, USA.

Center for Robotic Simulation and Education, Catherine & Joseph Aresty Department of Urology, University of Southern California, California, CA, USA.

出版信息

NPJ Digit Med. 2023 Mar 30;6(1):54. doi: 10.1038/s41746-023-00766-2.

Abstract

Artificial intelligence (AI) systems can now reliably assess surgeon skills through videos of intraoperative surgical activity. With such systems informing future high-stakes decisions such as whether to credential surgeons and grant them the privilege to operate on patients, it is critical that they treat all surgeons fairly. However, it remains an open question whether surgical AI systems exhibit bias against surgeon sub-cohorts, and, if so, whether such bias can be mitigated. Here, we examine and mitigate the bias exhibited by a family of surgical AI systems-SAIS-deployed on videos of robotic surgeries from three geographically-diverse hospitals (USA and EU). We show that SAIS exhibits an underskilling bias, erroneously downgrading surgical performance, and an overskilling bias, erroneously upgrading surgical performance, at different rates across surgeon sub-cohorts. To mitigate such bias, we leverage a strategy -TWIX-which teaches an AI system to provide a visual explanation for its skill assessment that otherwise would have been provided by human experts. We show that whereas baseline strategies inconsistently mitigate algorithmic bias, TWIX can effectively mitigate the underskilling and overskilling bias while simultaneously improving the performance of these AI systems across hospitals. We discovered that these findings carry over to the training environment where we assess medical students' skills today. Our study is a critical prerequisite to the eventual implementation of AI-augmented global surgeon credentialing programs, ensuring that all surgeons are treated fairly.

摘要

人工智能(AI)系统现在可以通过术中手术活动的视频可靠地评估外科医生的技能。由于此类系统将为未来的重大决策提供依据,例如是否认可外科医生的资质并赋予他们为患者进行手术的特权,因此确保这些系统公平对待所有外科医生至关重要。然而,外科AI系统是否对外科医生亚群体存在偏见,以及如果存在偏见,这种偏见是否可以减轻,仍是一个悬而未决的问题。在此,我们研究并减轻了一类外科AI系统——SAIS——在来自三家地理位置不同的医院(美国和欧盟)的机器人手术视频上所表现出的偏见。我们表明,SAIS在不同外科医生亚群体中表现出技能低估偏见(错误地降低手术表现)和技能高估偏见(错误地提高手术表现),且发生率不同。为了减轻这种偏见,我们采用了一种策略——TWIX——该策略教导AI系统为其技能评估提供可视化解释,而这原本是由人类专家提供的。我们表明,虽然基线策略对算法偏见的减轻并不一致,但TWIX可以有效减轻技能低估和技能高估偏见,同时提高这些AI系统在各医院的性能。我们发现这些发现同样适用于我们如今评估医学生技能的训练环境。我们的研究是最终实施人工智能增强的全球外科医生资质认证计划的关键前提,可确保公平对待所有外科医生。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e0c/10063676/fbdc20bb31c5/41746_2023_766_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验