Suppr超能文献

使用时频分析和半监督学习的瞬时心理负荷评估

Instantaneous mental workload assessment using time-frequency analysis and semi-supervised learning.

作者信息

Zhang Jianhua, Li Jianrong, Wang Rubin

机构信息

AI Lab, Department of Computer Science, Oslo Metropolitan University, 0166 Oslo, Norway.

School of Information Science and Engineering, East China University of Science and Technology, Shanghai, 200237 China.

出版信息

Cogn Neurodyn. 2020 Oct;14(5):619-642. doi: 10.1007/s11571-020-09589-3. Epub 2020 May 12.

Abstract

The real-time assessment of mental workload (MWL) is critical for development of intelligent human-machine cooperative systems in various safety-critical applications. Although data-driven machine learning (ML) approach has shown promise in MWL recognition, there is still difficulty in acquiring a sufficient number of labeled data to train the ML models. This paper proposes a semi-supervised extreme learning machine (SS-ELM) algorithm for MWL pattern classification requiring only a small number of labeled data. The measured data analysis results show that the proposed SS-ELM paradigm can effectively improve the accuracy and efficiency of MWL classification and thus provide a competitive ML approach to utilizing a large number of unlabeled data which are available in many real-world applications.

摘要

心理负荷(MWL)的实时评估对于各种安全关键应用中的智能人机协作系统的开发至关重要。尽管数据驱动的机器学习(ML)方法在MWL识别方面已显示出前景,但获取足够数量的标记数据来训练ML模型仍存在困难。本文提出了一种半监督极限学习机(SS-ELM)算法,用于MWL模式分类,该算法仅需要少量标记数据。实测数据分析结果表明,所提出的SS-ELM范式能够有效提高MWL分类的准确性和效率,从而提供一种有竞争力的ML方法来利用许多实际应用中可用的大量未标记数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ecda/7501379/225c84bbc787/11571_2020_9589_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验