Suppr超能文献

基于飞秒激光辅助制造的压电驱动晶体石英微机电系统谐振器。

Femtosecond laser-assisted fabrication of piezoelectrically actuated crystalline quartz-based MEMS resonators.

作者信息

Linden John, Melech Neta, Sakaev Igor, Fogel Ofer, Krylov Slava, Nuttman David, Zalevsky Zeev, Sirota Marina

机构信息

Department of Engineering, Bar Ilan University, Ramat Gan, Israel.

Research and Incubation, ERC, KLA, Yavne, Israel.

出版信息

Microsyst Nanoeng. 2023 Mar 30;9:38. doi: 10.1038/s41378-023-00511-5. eCollection 2023.

Abstract

A novel technology for the precise fabrication of quartz resonators for MEMS applications is introduced. This approach is based on the laser-induced chemical etching of quartz. The main processing steps include femtosecond UV laser treatment of a Cr-Au-coated Z-cut alpha quartz wafer, followed by wet etching. The laser-patterned Cr-Au coating serves as an etch mask and is used to form electrodes for piezoelectric actuation. This fabrication approach does not alter the quartz's crystalline structure or its piezo-electric properties. The formation of defects, which is common in laser micromachined quartz, is prevented by optimized process parameters and by controlling the temporal behavior of the laser-matter interactions. The process does not involve any lithography and allows for high geometric design flexibility. Several configurations of piezoelectrically actuated beam-type resonators were fabricated using relatively mild wet etching conditions, and their functionality was experimentally demonstrated. The devices are distinguished from prior efforts by the reduced surface roughness and improved wall profiles of the fabricated quartz structures.

摘要

介绍了一种用于微机电系统(MEMS)应用的石英谐振器精确制造的新技术。这种方法基于激光诱导的石英化学蚀刻。主要加工步骤包括对涂有Cr-Au的Z切割α石英晶片进行飞秒紫外激光处理,然后进行湿法蚀刻。激光图案化的Cr-Au涂层用作蚀刻掩膜,并用于形成压电驱动的电极。这种制造方法不会改变石英的晶体结构或其压电特性。通过优化工艺参数和控制激光与物质相互作用的时间行为,可防止在激光微加工石英中常见的缺陷形成。该工艺不涉及任何光刻技术,并具有很高的几何设计灵活性。使用相对温和的湿法蚀刻条件制造了几种压电驱动梁式谐振器的配置,并通过实验证明了它们的功能。与先前的努力相比,这些器件的区别在于所制造的石英结构具有更低的表面粗糙度和更好的壁面轮廓。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed08/10060424/3f41422bf9f8/41378_2023_511_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验