Jin Yezhi, Xu Yinan, García Sánchez Jireh S, Pérez-Lemus Gustavo R, Zubieta Rico Pablo F, Delferro Massimiliano, de Pablo Juan J
Pritzker School of Molecular Engineering, The University of Chicago, 640 S Ellis Avenue, Chicago, Illinois 60637, United States.
Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S Cass Avenue, Lemont, Illinois 60439, United States.
ACS Catal. 2025 May 12;15(11):8931-8942. doi: 10.1021/acscatal.5c00724. eCollection 2025 Jun 6.
Methane activation on stepped Ni(511) surfaces involves the rearrangement of surface atoms as the chemical reaction proceeds. This process is particularly sensitive to temperature. Using machine-learned interatomic potentials (MLIPs) coupled with enhanced sampling techniques, we investigate the activation of methane under realistic operando conditions. Our analysis reveals that methane dissociation occurs predominantly at step-edge nickel atoms. As CH (where = 3 or 4) species bind to additional surface nickel atoms, their reduced mobility leads to entropic penalties that suppress certain configurations and transition states. This is reflected in the underlying free energy surfaces, where configurations such as methyl binding to hollow sites and activation routes involving two nickel atoms become unfavorable as temperature increases. At elevated temperatures, methane activation extends from step-edge sites to terrace regions because of reduced free-energy barriers and enhanced surface dynamics. By decomposing the free-energy into enthalpic and entropic contributions, we uncover temperature-dependent shifts in the preferences of methane for the relevant active sites and arrive at a detailed molecular picture of methane activation.
在台阶状Ni(511)表面上的甲烷活化过程中,随着化学反应的进行,表面原子会发生重排。这个过程对温度特别敏感。我们使用机器学习原子间势(MLIPs)结合增强采样技术,研究了在实际操作条件下甲烷的活化情况。我们的分析表明,甲烷解离主要发生在台阶边缘的镍原子处。当CH (其中 = 3或4)物种与额外的表面镍原子结合时,它们迁移率的降低会导致熵罚,从而抑制某些构型和过渡态。这反映在潜在的自由能面上,随着温度升高,诸如甲基结合到空心位点以及涉及两个镍原子的活化途径等构型变得不利。在高温下,由于自由能垒降低和表面动力学增强,甲烷活化从台阶边缘位点扩展到平台区域。通过将自由能分解为焓和熵的贡献,我们发现了甲烷对相关活性位点偏好的温度依赖性变化,并得出了甲烷活化的详细分子图景。