Suppr超能文献

BCR-Net:一种从组织病理学图像预测乳腺癌复发的深度学习框架。

BCR-Net: A deep learning framework to predict breast cancer recurrence from histopathology images.

机构信息

Center for Biomedical Informatics, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America.

Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America.

出版信息

PLoS One. 2023 Apr 4;18(4):e0283562. doi: 10.1371/journal.pone.0283562. eCollection 2023.

Abstract

Breast cancer is the most common malignancy in women, with over 40,000 deaths annually in the United States alone. Clinicians often rely on the breast cancer recurrence score, Oncotype DX (ODX), for risk stratification of breast cancer patients, by using ODX as a guide for personalized therapy. However, ODX and similar gene assays are expensive, time-consuming, and tissue destructive. Therefore, developing an AI-based ODX prediction model that identifies patients who will benefit from chemotherapy in the same way that ODX does would give a low-cost alternative to the genomic test. To overcome this problem, we developed a deep learning framework, Breast Cancer Recurrence Network (BCR-Net), which automatically predicts ODX recurrence risk from histopathology slides. Our proposed framework has two steps. First, it intelligently samples discriminative features from whole-slide histopathology images of breast cancer patients. Then, it automatically weights all features through a multiple instance learning model to predict the recurrence score at the slide level. On a dataset of H&E and Ki67 breast cancer resection whole slides images (WSIs) from 99 anonymized patients, the proposed framework achieved an overall AUC of 0.775 (68.9% and 71.1% accuracies for low and high risk) on H&E WSIs and overall AUC of 0.811 (80.8% and 79.2% accuracies for low and high risk) on Ki67 WSIs of breast cancer patients. Our findings provide strong evidence for automatically risk-stratify patients with a high degree of confidence. Our experiments reveal that the BCR-Net outperforms the state-of-the-art WSI classification models. Moreover, BCR-Net is highly efficient with low computational needs, making it practical to deploy in limited computational settings.

摘要

乳腺癌是女性最常见的恶性肿瘤,仅在美国每年就有超过 4 万人因此死亡。临床医生通常依赖乳腺癌复发评分(Oncotype DX,ODX)对乳腺癌患者进行风险分层,将 ODX 作为个性化治疗的指南。然而,ODX 和类似的基因检测既昂贵又耗时,且具有组织破坏性。因此,开发一种基于人工智能的 ODX 预测模型,以与 ODX 相同的方式识别将从化疗中受益的患者,这将为基因检测提供一种低成本的替代方法。为了解决这个问题,我们开发了一个深度学习框架,称为乳腺癌复发网络(BCR-Net),它可以自动从乳腺癌患者的全切片组织病理学图像中预测 ODX 复发风险。我们提出的框架有两个步骤。首先,它从乳腺癌患者的全切片组织病理学图像中智能地采样有鉴别力的特征。然后,它通过多实例学习模型自动对所有特征进行加权,以预测幻灯片级别的复发评分。在来自 99 名匿名患者的 H&E 和 Ki67 乳腺癌切除全切片图像(WSI)数据集上,该框架在 H&E WSI 上的总体 AUC 为 0.775(低风险和高风险的准确率分别为 68.9%和 71.1%),在 Ki67 WSI 上的总体 AUC 为 0.811(低风险和高风险的准确率分别为 80.8%和 79.2%)。我们的研究结果为自动对患者进行高可信度的风险分层提供了有力的证据。我们的实验表明,BCR-Net 优于最先进的 WSI 分类模型。此外,BCR-Net 效率很高,计算需求低,在计算资源有限的情况下很实用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6bb/10072418/73f314d6dc2a/pone.0283562.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验