文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于从全切片图像预测肺腺癌复发的深度学习模型。

Deep Learning Model for Predicting Lung Adenocarcinoma Recurrence from Whole Slide Images.

作者信息

Su Ziyu, Afzaal Usman, Niu Shuo, de Toro Margarita Munoz, Xing Fei, Ruiz Jimmy, Gurcan Metin N, Li Wencheng, Niazi M Khalid Khan

机构信息

Center for Artificial Intelligence Research, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA.

Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA.

出版信息

Cancers (Basel). 2024 Sep 6;16(17):3097. doi: 10.3390/cancers16173097.


DOI:10.3390/cancers16173097
PMID:39272955
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11394488/
Abstract

Lung cancer is the leading cause of cancer-related death in the United States. Lung adenocarcinoma (LUAD) is one of the most common subtypes of lung cancer that can be treated with resection. While resection can be curative, there is a significant risk of recurrence, which necessitates close monitoring and additional treatment planning. Traditionally, microscopic evaluation of tumor grading in resected specimens is a standard pathologic practice that informs subsequent therapy and patient management. However, this approach is labor-intensive and subject to inter-observer variability. To address the challenge of accurately predicting recurrence, we propose a deep learning-based model to predict the 5-year recurrence of LUAD in patients following surgical resection. In our model, we introduce an innovative dual-attention architecture that significantly enhances computational efficiency. Our model demonstrates excellent performance in recurrent risk stratification, achieving a hazard ratio of 2.29 (95% CI: 1.69-3.09, < 0.005), which outperforms several existing deep learning methods. This study contributes to ongoing efforts to use deep learning models for automatically learning histologic patterns from whole slide images (WSIs) and predicting LUAD recurrence risk, thereby improving the accuracy and efficiency of treatment decision making.

摘要

肺癌是美国癌症相关死亡的主要原因。肺腺癌(LUAD)是肺癌最常见的亚型之一,可通过手术切除进行治疗。虽然手术切除可以治愈,但复发风险很高,这就需要密切监测和额外的治疗规划。传统上,对切除标本进行肿瘤分级的显微镜评估是一种标准的病理做法,可为后续治疗和患者管理提供依据。然而,这种方法劳动强度大,且存在观察者间差异。为应对准确预测复发的挑战,我们提出一种基于深度学习的模型,用于预测手术切除后LUAD患者的5年复发情况。在我们的模型中,我们引入了一种创新的双注意力架构,显著提高了计算效率。我们的模型在复发风险分层方面表现出色,危险比达到2.29(95%置信区间:1.69 - 3.09,< 0.005),优于几种现有的深度学习方法。本研究有助于持续努力利用深度学习模型从全切片图像(WSIs)中自动学习组织学模式并预测LUAD复发风险,从而提高治疗决策的准确性和效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6572/11394488/20b1afef8f3f/cancers-16-03097-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6572/11394488/c8ebd0d61819/cancers-16-03097-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6572/11394488/a262ec99e8ca/cancers-16-03097-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6572/11394488/20b1afef8f3f/cancers-16-03097-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6572/11394488/c8ebd0d61819/cancers-16-03097-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6572/11394488/a262ec99e8ca/cancers-16-03097-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6572/11394488/20b1afef8f3f/cancers-16-03097-g003.jpg

相似文献

[1]
Deep Learning Model for Predicting Lung Adenocarcinoma Recurrence from Whole Slide Images.

Cancers (Basel). 2024-9-6

[2]
Can a Liquid Biopsy Detect Circulating Tumor DNA With Low-passage Whole-genome Sequencing in Patients With a Sarcoma? A Pilot Evaluation.

Clin Orthop Relat Res. 2025-1-1

[3]
Development and Validation of a Convolutional Neural Network Model to Predict a Pathologic Fracture in the Proximal Femur Using Abdomen and Pelvis CT Images of Patients With Advanced Cancer.

Clin Orthop Relat Res. 2023-11-1

[4]
Short-Term Memory Impairment

2025-1

[5]
A deep learning approach to direct immunofluorescence pattern recognition in autoimmune bullous diseases.

Br J Dermatol. 2024-7-16

[6]
Inhaled mannitol for cystic fibrosis.

Cochrane Database Syst Rev. 2015-10-9

[7]
Artificial intelligence-based prediction of organ involvement in Sjogren's syndrome using labial gland biopsy whole-slide images.

Clin Rheumatol. 2025-6-5

[8]
The Black Book of Psychotropic Dosing and Monitoring.

Psychopharmacol Bull. 2024-7-8

[9]
Comparison of Two Modern Survival Prediction Tools, SORG-MLA and METSSS, in Patients With Symptomatic Long-bone Metastases Who Underwent Local Treatment With Surgery Followed by Radiotherapy and With Radiotherapy Alone.

Clin Orthop Relat Res. 2024-12-1

[10]
Are Current Survival Prediction Tools Useful When Treating Subsequent Skeletal-related Events From Bone Metastases?

Clin Orthop Relat Res. 2024-9-1

本文引用的文献

[1]
Cancer statistics, 2024.

CA Cancer J Clin. 2024

[2]
AdvMIL: Adversarial multiple instance learning for the survival analysis on whole-slide images.

Med Image Anal. 2024-1

[3]
Attention2Minority: A salient instance inference-based multiple instance learning for classifying small lesions in whole slide images.

Comput Biol Med. 2023-12

[4]
One label is all you need: Interpretable AI-enhanced histopathology for oncology.

Semin Cancer Biol. 2023-12

[5]
Practical recommendations for using ctDNA in clinical decision making.

Nature. 2023-7

[6]
Integration of clinical features and deep learning on pathology for the prediction of breast cancer recurrence assays and risk of recurrence.

NPJ Breast Cancer. 2023-4-14

[7]
BCR-Net: A deep learning framework to predict breast cancer recurrence from histopathology images.

PLoS One. 2023

[8]
Cancer statistics, 2023.

CA Cancer J Clin. 2023-1

[9]
Transformer-based unsupervised contrastive learning for histopathological image classification.

Med Image Anal. 2022-10

[10]
Pan-cancer integrative histology-genomic analysis via multimodal deep learning.

Cancer Cell. 2022-8-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索