Suppr超能文献

用于高复杂度机器人集群控制的低复杂度脑机接口

A Low-Complexity Brain-Computer Interface for High-Complexity Robot Swarm Control.

作者信息

Canal Gregory, Diaz-Mercado Yancy, Egerstedt Magnus, Rozell Christopher

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2023;31:1816-1825. doi: 10.1109/TNSRE.2023.3257261.

Abstract

A brain-computer interface (BCI) is a system that allows a human operator to use only mental commands in controlling end effectors that interact with the world around them. Such a system consists of a measurement device to record the human user's brain activity, which is then processed into commands that drive a system end effector. BCIs involve either invasive measurements which allow for high-complexity control but are generally infeasible, or noninvasive measurements which offer lower quality signals but are more practical to use. In general, BCI systems have not been developed that efficiently, robustly, and scalably perform high-complexity control while retaining the practicality of noninvasive measurements. Here we leverage recent results from feedback information theory to fill this gap by modeling BCIs as a communications system and deploying a human-implementable interaction algorithm for noninvasive control of a high-complexity robot swarm. We construct a scalable dictionary of robotic behaviors that can be searched simply and efficiently by a BCI user, as we demonstrate through a large-scale user study testing the feasibility of our interaction algorithm, a user test of the full BCI system on (virtual and real) robot swarms, and simulations that verify our results against theoretical models. Our results provide a proof of concept for how a large class of high-complexity effectors (even beyond robotics) can be effectively controlled by a BCI system with low-complexity and noisy inputs.

摘要

脑机接口(BCI)是一种系统,它允许人类操作员仅使用心理指令来控制与周围世界交互的末端执行器。这样的系统由一个测量设备组成,用于记录人类用户的大脑活动,然后将其处理成驱动系统末端执行器的指令。脑机接口涉及侵入性测量,这种测量允许进行高复杂性控制,但通常不可行;或者非侵入性测量,这种测量提供的信号质量较低,但使用起来更实际。一般来说,尚未开发出能在保持非侵入性测量实用性的同时,高效、稳健且可扩展地执行高复杂性控制的脑机接口系统。在此,我们利用反馈信息理论的最新成果来填补这一空白,将脑机接口建模为通信系统,并部署一种可由人类实现的交互算法,用于对高复杂性机器人集群进行非侵入性控制。我们构建了一个可扩展的机器人行为字典,脑机接口用户可以简单高效地进行搜索,我们通过一项大规模用户研究来测试我们交互算法的可行性,对完整脑机接口系统在(虚拟和真实)机器人集群上进行用户测试,并通过模拟将我们的结果与理论模型进行验证,以此来证明这一点。我们的结果为一类大型高复杂性执行器(甚至超出机器人领域)如何能由具有低复杂性和噪声输入的脑机接口系统有效控制提供了概念验证。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验