Suppr超能文献

用户对结合脑机接口和眼动追踪的便携式增强现实用户界面的共享机器人控制系统的评价。

User Evaluation of a Shared Robot Control System Combining BCI and Eye Tracking in a Portable Augmented Reality User Interface.

机构信息

Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, 1050 Brussels, Belgium.

Equipes Traitement de l'Information et Systèmes, UMR 8051, CY Cergy Paris Université, École Nationale Supérieure de l'Electronique et de ses Applications (ENSEA), Centre National de la Recherche Scientifique (CNRS), 95000 Cergy, France.

出版信息

Sensors (Basel). 2024 Aug 14;24(16):5253. doi: 10.3390/s24165253.

Abstract

This study evaluates an innovative control approach to assistive robotics by integrating brain-computer interface (BCI) technology and eye tracking into a shared control system for a mobile augmented reality user interface. Aimed at enhancing the autonomy of individuals with physical disabilities, particularly those with impaired motor function due to conditions such as stroke, the system utilizes BCI to interpret user intentions from electroencephalography signals and eye tracking to identify the object of focus, thus refining control commands. This integration seeks to create a more intuitive and responsive assistive robot control strategy. The real-world usability was evaluated, demonstrating significant potential to improve autonomy for individuals with severe motor impairments. The control system was compared with an eye-tracking-based alternative to identify areas needing improvement. Although BCI achieved an acceptable success rate of 0.83 in the final phase, eye tracking was more effective with a perfect success rate and consistently lower completion times (p<0.001). The user experience responses favored eye tracking in 11 out of 26 questions, with no significant differences in the remaining questions, and subjective fatigue was higher with BCI use (p=0.04). While BCI performance lagged behind eye tracking, the user evaluation supports the validity of our control strategy, showing that it could be deployed in real-world conditions and suggesting a pathway for further advancements.

摘要

本研究通过将脑机接口(BCI)技术和眼动追踪技术集成到移动增强现实用户界面的共享控制系统中,评估了一种创新的辅助机器人控制方法。该系统旨在增强身体残疾人士的自主性,特别是那些因中风等疾病而运动功能受损的人士。该系统利用 BCI 从脑电图信号中解读用户意图,利用眼动追踪来识别关注的对象,从而细化控制命令。这种集成旨在创建一种更直观、响应更灵敏的辅助机器人控制策略。实际可用性评估表明,该系统具有显著提高严重运动障碍人士自主性的潜力。该控制系统与基于眼动追踪的替代方案进行了比较,以确定需要改进的领域。虽然 BCI 在最后阶段达到了 0.83 的可接受成功率,但眼动追踪在所有情况下的成功率均为 1,且完成时间更短(p<0.001)。在 26 个问题中有 11 个问题中,用户对眼动追踪的体验评价更高,而在其余问题中则没有显著差异,并且使用 BCI 会导致更高的主观疲劳感(p=0.04)。虽然 BCI 的性能落后于眼动追踪,但用户评估支持我们控制策略的有效性,表明它可以在实际条件下部署,并为进一步的发展提供了途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/deed/11359122/08e90e00a6b7/sensors-24-05253-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验