Sundrani Sameer, Chen Julie, Jin Boyang Tom, Abad Zahra Shakeri Hossein, Rajpurkar Pranav, Kim David
School of Medicine, Vanderbilt University, Nashville, TN, USA.
Department of Computer Science, Stanford University, Stanford, CA, USA.
NPJ Digit Med. 2023 Apr 4;6(1):60. doi: 10.1038/s41746-023-00803-0.
Anticipation of clinical decompensation is essential for effective emergency and critical care. In this study, we develop a multimodal machine learning approach to predict the onset of new vital sign abnormalities (tachycardia, hypotension, hypoxia) in ED patients with normal initial vital signs. Our method combines standard triage data (vital signs, demographics, chief complaint) with features derived from a brief period of continuous physiologic monitoring, extracted via both conventional signal processing and transformer-based deep learning on ECG and PPG waveforms. We study 19,847 adult ED visits, divided into training (75%), validation (12.5%), and a chronologically sequential held-out test set (12.5%). The best-performing models use a combination of engineered and transformer-derived features, predicting in a 90-minute window new tachycardia with AUROC of 0.836 (95% CI, 0.800-0.870), new hypotension with AUROC 0.802 (95% CI, 0.747-0.856), and new hypoxia with AUROC 0.713 (95% CI, 0.680-0.745), in all cases significantly outperforming models using only standard triage data. Salient features include vital sign trends, PPG perfusion index, and ECG waveforms. This approach could improve the triage of apparently stable patients and be applied continuously for the prediction of near-term clinical deterioration.
预测临床失代偿对于有效的急诊和重症监护至关重要。在本研究中,我们开发了一种多模态机器学习方法,用于预测初始生命体征正常的急诊患者新的生命体征异常(心动过速、低血压、缺氧)的发作。我们的方法将标准分诊数据(生命体征、人口统计学、主要症状)与从短时间连续生理监测中提取的特征相结合,这些特征通过常规信号处理以及基于变压器的深度学习从心电图和光电容积脉搏波描记图(PPG)波形中提取。我们研究了19847例成人急诊就诊病例,分为训练集(75%)、验证集(12.5%)和按时间顺序排列的留出测试集(12.5%)。表现最佳的模型使用了工程特征和基于变压器提取的特征的组合,在90分钟窗口内预测新的心动过速的曲线下面积(AUROC)为0.836(95%置信区间,0.800 - 0.870),新的低血压的AUROC为0.802(95%置信区间,0.747 - 0.856),新的缺氧的AUROC为0.713(95%置信区间,0.680 - 0.745),在所有情况下均显著优于仅使用标准分诊数据的模型。显著特征包括生命体征趋势、PPG灌注指数和心电图波形。这种方法可以改善对看似稳定患者的分诊,并持续应用于近期临床恶化的预测。