IEEE J Biomed Health Inform. 2023 Aug;27(8):3740-3747. doi: 10.1109/JBHI.2023.3235040. Epub 2023 Aug 7.
Early detection is vital for future neuroprotective treatments of Parkinson's disease (PD). Resting state electroencephalographic (EEG) recording has shown potential as a cost-effective means to aid in detection of neurological disorders such as PD. In this study, we investigated how the number and placement of electrodes affects classifying PD patients and healthy controls using machine learning based on EEG sample entropy. We used a custom budget-based search algorithm for selecting optimized sets of channels for classification, and iterated over variable channel budgets to investigate changes in classification performance. Our data consisted of 60-channel EEG collected at three different recording sites, each of which included observations collected both eyes open (total N = 178) and eyes closed (total N = 131). Our results with the data recorded eyes open demonstrated reasonable classification performance (ACC = .76; AUC = .76) with only 5 channels placed far away from each other, the selected regions including right-frontal, left-temporal and midline-occipital sites. Comparison to randomly selected subsets of channels indicated improved classifier performance only with relatively small channel-budgets. The results with the data recorded eyes closed demonstrated consistently worse classification performance (when compared to eyes open data), and classifier performance improved more steadily as a function of number of channels. In summary, our results suggest that a small subset of electrodes of an EEG recording can suffice for detecting PD with a classification performance on par with a full set of electrodes. Furthermore our results demonstrate that separately collected EEG data sets can be used for pooled machine learning based PD detection with reasonable classification performance.
早期发现对于未来帕金森病 (PD) 的神经保护治疗至关重要。静息态脑电图 (EEG) 记录已显示出作为一种具有成本效益的手段的潜力,有助于检测帕金森病等神经障碍。在这项研究中,我们使用基于 EEG 样本熵的机器学习研究了通过电极数量和位置来分类 PD 患者和健康对照的方法。我们使用了一种自定义基于预算的搜索算法来选择用于分类的最佳通道集,并迭代了不同的通道预算,以研究分类性能的变化。我们的数据由在三个不同记录部位采集的 60 通道 EEG 组成,每个部位均包括睁眼(总 N = 178)和闭眼(总 N = 131)两种观察。我们在睁眼记录数据中取得了合理的分类性能(ACC =.76;AUC =.76),仅使用 5 个彼此远离的通道即可实现,所选区域包括右额、左颞和中线枕部。与随机选择的通道子集相比,仅在较小的通道预算下,分类器性能有所提高。闭眼记录数据的结果表明分类性能始终较差(与睁眼数据相比),随着通道数量的增加,分类器性能会更稳定地提高。总的来说,我们的结果表明 EEG 记录中的一小部分电极就足以检测 PD,其分类性能与全套电极相当。此外,我们的结果表明,可以使用单独采集的 EEG 数据集进行基于机器学习的 PD 检测 pooled,分类性能合理。